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Abstract
In this paper, we show that two variants of Stern’s identification scheme [IEEE Transaction on Information
Theory '96] are provably secure against concurrent attack under the assumptionsnamgheasenardness of
lattice problems. These assumptions are weaker than those for the previous lattice-based identification schemes
of Micciancio and Vadhan [CRYPTO ’'03] and of Lyubashevsky [PKC '08]. We also constftictemt ad hoc
anonymous identification schemes based on the lattice problems by modifying the variants.

Keywords: lattice-based cryptography, identification schemes, concurrent security, ad hoc anonymous iden-
tification schemes.

1 Introduction

Many researchers have so far developed cryptographic schemes based on combinatorial problems related to knap-
sacks|0, 30], codes B2, [34], and latticeslT, 2,12, [14], due to the intractability of the underlying problems, the
efficiency of primitive operations, and the threat of quantum computers to number-theoretic s¢Bgmes [

The cryptographic schemes based on combinatorial problems usually assuaveitge-casdardness of
the underlying problem because they have to deal with randomly generated cryptographic instances such as keys,
plaintexts, and ciphertexts. This implies security risk in such schemes since it is generally hard to show their
average-case hardness. In fact, several attacks against such schemes were found in practic8%a#)2%|.

The cryptographic schemes based only on the average-case hardness are more likely to be at risk of these kinds of
attacks.

It is therefore significant to guarantee the security under the worst-case hardnessl]|Atenfed that the
average-case hardness of some lattice problem is equivalent to its worst-case hardness. His seminal result opened
the way to cryptographic schemes based on the worst-case hardness of lattice problems. Several lattice-based
schemes were proposed such as public-key encryption schemes, e.g., by Ajtai and [Zjwarkl [hash func-
tions [1,[11, 23]

Among varieties of lattice-based cryptographic schemes, there are very few results on the identification (ID)
schemes based on the worst-case hardness of lattice problems. For example, Micciancio and Vadhan proposed
ID schemes based on the worst-case hardness of lattice problems, such as the gap versions of the Shortest Vector
Problem. These schemes are obtained from their statistical zero-knowledge protocdticigthteproversi24).

Recently, Lyubashevsky also constructed lattice-based ID schemes secure against activé zttadhkf@rtu-

nately, the approximation factors of the underlying problems in their schemes are large for practical use as noted
in [17, Sec. 5] since security parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e., the assumptions on lattice
problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we cgll &nd S of Stern’s ID schemé34]. These variants
are secure againsbncurrentattacl under the assumptions on thverst-caséhardness of lattice problems, while
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11n active attackan adversary could interact with the prover prior to impersonatioooficurrent attackan adversary could interact with
many diferent prover “clones” concurrently prior to impersonation. Each clone has the same secret key, but has independent random coins




Stern’s original scheme assumes Hverage-cas@ardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only agessiveattack. The underlying
problems of 3, and §, are the gap version of the Shortest Vector Problem with approximation fa¢tjr

(GapSVFg(n)) and the Shortest Vector Problem for ideal lattices with approximation féi(m)r(A(f)-SVPg(n)),

respectively, wher®(g(n)) = O(g(n) poly logg(n)) for a functiong in n, The assumptions are weaker than those
for the previous lattice-based ID schemid, [17]. We stress that such weaker assumptions will take a step for
practical use of lattice-based ID schemes.

Moreover, we show that our variants yielffieient ad hoc anonymous identification schemes (AID schemes).
In an AID scheme, which introduced by Dodis, Kiayias, Nicolosi, and Sh@jpthe protocol is done by two
parties, a prover and verifier, but we implicitly suppose an ad hoc group. Given public keys of all members of
the group to the verifier (and the prover), the goal is to convince the verifier that the prover belongs to the group,
without being specified who the prover is of the group, if and only if the prover is an actual member of the
group. We formally define a concurrent version of the security notion, the security against impersonation under
concurrent chosen-group attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of Ga;%‘%nyndA(f)—SVPg(n). To authors’ best knowledge, this is the first
non-trivial construction under the assumption of the worst-case hardness of lattice problems.

1.2 Main ldeas

In this section, we only discuss the ID schenjg $ased on GapSVP. We first construct a string commitment

scheme based on the lattice problem which will be used in ID schemes. Then we will describe the idea of the proof

on concurrent security of the variant. Finally, we give a sketch of our construction method of an AID scheme.
Before giving the overview, we review the underlying problem GapgSaiil the fundamental problem, the

Small Integer Solution Problem (§) %), on which our variants are directly based. The informal definitions and

the relationship of two problems are given as follows:

e SI§;mg: Given arandomn-by-mmatrix A whose elements are iy, the problem is finding am-dimensional
integral non-zero vectar such thatAz = 0 (mod q) and||z||, < 8.

. GapSVI%: Given ann-dimensional latticé and a rational numbaet, the problem is outputting YES if there
exists a non-zero vectaere L such that|v||, < d, or NO if for any non-zero vector € L ||v||, > yd.

e ([23]) For suitableg andm, if there exists a probabilistic polynomial-time algorithm which solves; &5
on the average then there exists a probabilistic polynomial-time algorithm which solves %ﬁym
the worst case.

As in Lyubashevsky’s resuliil[7], we use the above relationship for our security reduction. Hence we mainly deals
with SIS instead of GapSVP.
We simply obtain the lattice-based hash functions ad1ft [Choose a random matri& € Zg*™. For anyx €
{0, 1}™, a hash value i$a(x) := Ax modgq. A collision (x, x’) of the hash functioris implies a solutiorz = x — x’
of SI§;m ym- Thus, the security of the hash functions is based on the worst-case hardness of g%en%.\/P

String commitment schemes: We construct a string commitment scheme from lattice-based hash functions.
General constructions of string commitment schemes from collision-resistant hash functions were shown by
Damgard, Pedersen, and PfizmabBhdnd Halevi and Micali[L3]. Stern also constructed a string commitment
scheme from collision-resistant hash functions34, [Sec. 11I-A]: Leth be a hash function. Given a strisgand

a random string, a commitment i$i(o o (0 & S)), whereo and® denote the concatenation and XOR operators,
respectively. However, its hiding property was not shown. We construct a string commitment scheme by a more
direct and simpler way than the general one and Stern’s one: Gigedp, a commitment i$i(o o s), whereh

is a lattice-based hash function. The binding property simply follows from the collision-resistance progerty of
We derive its hiding property frora-regularity ofh for some negligible functiowm (see, e.g./19, Sec. 4.1]). As
mentioned in the above, we have collision-resistant lattice-based hash functions based on the worst-case hardness
of GapSVP, while Stern assumed the existence of collision-resistant hash function.

and maintains its own state. After interacting with many clones, the adversary tries impersonation.



ID schemesAo, A1, A € ngm)

Param| Public key Relation yin GapSVé Comm. cost Errors
MVE [24] |- Ag, Aq Agx=00rA;x=0 o(n*%) t-O(n) 1-sided
Le. [T [(A)  |Ay Ax =y A(n?) t-O(n) 2-sided
Sh. A y Ax =y andwy(x) = m/2 | &(n) t- O&(n) 1-sided

AID schemes Ao, Ai1, A € ngm)

Base Param| Set of pks Relation yin GapSVI% Comm. cost Errors
MV, [24] |- {Aio,Ailiz1..1 |Aiox=00rAij;1x=0 o(n*%) tl- O(n) 1-sided
Lo [I71  |A Vi, ..V AX =Y, O(n?) tl - 3(n) 2-sided
S A Vi, .. Y Ax = y; andwy(x) = m/2 | O(n) t-O( +n) |1-sided

Table 1: Comparisons among ID schemes and AID schemes. A secrakhigy € {0, 1}™. The factom denotes

the security parameter. We denote the Hamming weighkthof wy (X). Assume that the protocols are repeated

times in parallel for reducing errors. In the table for AID schenhegnotes the number of the members in the

group. Note that the parameters in ideal-lattice-based versions are almost same as those in general-lattice-based
versions.

Our ID scheme and its concurrent security: In Stern’s scheme and our variant, a prover has a binary vector
x with fixed Hamming weight as hiser secret key. We also feed to the prover and the verifier a mfatag a
system parameter and a vecyoas the public key corresponding xo The task of the prover is to convince the
verifier that h¢gshe knows a correct secret kegatisfying a relatio\x = y andx has a valid weight.

In Stern’s protocoll34], the prover computes three commitments and sends them to the verifier. The verifier
sends a random challenge to the prover. The prover reveals two of three commitments corresponding to the
challenge. He constructed the knowledge extractor which computes a collision of a hash function in a string
commitment scheme or a secret key corresponding to the target public key if a passive adversary responds correctly
to any challenges after sending commitments.

One of standard strategies to achieve concurrent security is to prove that a public key corresponds to multiple
secret keys and that the protocol is witness indistinguishable (8)Rard proof-of-knowledge: The reduction
algorithm generateskandpk and runs the adversary pit by simulating the prover witsk Using the knowledge
extractor of the protocol, the algorithm obtains anogiéicorresponding tpk with probability at least A2 since
the protocol is WI. The algorithm then solves the underlying problem by ysingk, andsk.

In our reduction, when the algorithm is giveéy it generates a secret kayand a public keyy = Ax, and
feedsA andy to the adversary. Note that the algorithm can simulate the proverAvihdx that the adversary
concurrently accesses. Using the knowledge extractor for the adversary in Stern’s proof, the algorithm obtains
a collision of a string commitment scheme or a secret Xeguch that’ # x and Ax’ = vy, differently from
the general strategy. In the former case, the algorithm outputs the colls®nhdf a hash functiorh, in the
string commitment scheme. Thus, the solution for SIS is obtained-bg — . In the latter case, the condition
x # X’ will be satisfied with probability at least/2 by witness indistinguishability of Stern’s protocol. Thus, the
algorithm has the solution = x — x’ for SIS. Thet, norm of both solutions is at mosfm = O(n*/2). From the
relationship between SIS and GapSVP the assumption is the worst-case hardness of%;;\pSVP

AID schemes: Our construction for AID schemes also has the following structure: Eathmafimbers in the

ad hoc group has a vectsy (i = 1,...,1). Then, the common inputs of the scheme are a system parafeter
and a set of public keyg,, ...,y of the members, which satisfy = Ax; (i = 1,...,1). We can show that, by
Stern’s protocol, the prover can anonymously convince the verifier that the prover knomrsesponding to one

of yi1,...,y), since h¢gshe knows a new vector such thatAy; ... y)]x’ = 0. (This idea is due to Wu, Chen,
Wang, and Wand35], who presented an AID scheme from certain combinatorial problem.) Additionally, we force
the prover to prove that the positions-ef and-1 in x’ are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security of their scheme.

1.3 Comparison with Other Lattice-based Schemes

ID schemes: In [24], Micciancio and Vadhan proposed a statistical zero-knowledge and proof-of-knowledge
protocol for GapSVP. Combining it with lattice-based hash functions, we obtain an ID scheme which is secure



againsfpassive attackased on Slg, s, which can be reduced from Gapsé((ll?w).

In the scheme, the prover and the verifier are given a matas a common input, and the prover has a binary
vectorx as secret information. The task of the prover is to convince the verifier tfgtdknows satisfying the
relations thatAx = 0 andx is relatively short. It seems filicult to directly simulate the prover since a simulator
has to prepare a dummy short veciorsatisfyingAx’ = 0, which is the task of SIS itself. Thus, we cannot
straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID schemg, (kY short) based on the
worst-case hardness of lattice problems by Micciancio and Vadhan's ID scheme as n@@dd $ed. 5]. In
particular, applying techniques of De Santis, Di Crescenzo, Persiano, and6juangd[of Feige and Shami8],

a modification of the ID scheme can be proven to have concurrent s€daigd on the same problem as that in
the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on lattice pafylera<hll
it Lg, for short. In his protocol, the prover proves, giverandy, heg'she hax € {0, 1}™ such thatAx = y. Using
an active adversary, his knowledge extractor obtains another véoch thatAx’ = y and the length ok’ is at
mostO(m*®) = O(n*®). Thus, in the kg, scheme, the underlying problem is $}Ss.s), which can be reduced
from GapSV%(nz).

As mentioned in the previous section, the assumptioripfiSthe worst-case hardness of Gap%%)l?which
is weaker than those of My and Lg.. This improvement is obtained by the condition that the knowledge
extractor outputs another secret keéywhose length is at most/m = O(+/n). Our schemes has 1-sided error
(perfect completeness and soundness error), whilehias 2-sided error (completeness and soundness errors). As
a summary, sd€able 1

AID schemes: By taking OR ofl statementsd], we can straightforwardly obtain My -based and ¢, -based
AID schemes, whose security are based on the worst-case hardness of lattice problems. We faged onlgk
as the common inputs to the prover and the verifier. In this case, the prover convinces the verifigstizahas
a secret key corresponding to one of public kejs,

However, each of these simple modifications requires a large overhead cost involving the size of the ad hoc
group. Letl be the number of the members of the group artbe security parameter. The protocol is rurt in
times in parallel to reduce the errors. The communication costs of thg Mésed and &_-based schemes are
tl - O(n). The size of a set of the public keyslisO(n?) andO(n?) + 1 - O(n) in the modified versions of MY, and
L., respectively.

On AID schemes, thed, -based and our schemes require maagtorsproportional to the size of the group,
while the MV, -based scheme requires mamtricesproportional to the size of the group (§&gble J). Ad-
ditionally, the communication cost of our schemes-i®©(n + 1), while those in the MY, -based and ¢, -based
schemes ar# - O(n). This shows the advantage of our scheme on flieiency.

1.4 Organization

The rest of this paper is organized as follows.[Saction 2 we review basic notations and notions, and the

cryptographic schemes we consider. (The formal definition of AID scheme$Appendix A.]) In[Section B

we review lattice-based hash functions and give a commitment scheme based on the lattice-based hash functions

for our ID and AID schemes. IBection 4 we construct the ID scheme by combining the framework of Stern’s

scheme with our string commitment scheme. We present the AID sch
In this paper, due to lack of space, we only describe the schemes based on GapSVP since the construction on

A(f)-SVP follows from a similar strategy to that on GapSVP. We discuss the constructiond pi$VP in the

full paper.

2 Preliminaries

Basic notions and notations: We denote by the security parameter of cryptographic schemes throughout this
paper, which corresponds to the rank of the underlying lattice problems. We say that a problem is hard in the

2 Combining ORing technique by De Santis et[él].dnd discarding technique by Feige and ShaBinire derive a construction technique
for ID schemes secure against active attack. Moreover, we can construct concurrently secure ID schemes by the same technique as a folklore
says.



worst case if there exists no probabilistic polynomial-time algorithm solves the problem in the worst case with
non-negligible probability. We sometimes u8g(n)) for any functiongin n asO(g(n)-polylog(@(n))). We assume
that all random variables are independent and uniform. For a positive intelgéfn] denote a sefl, 2, ..., n}.

For anyp > 1, thef, norm of a vectox = Y(X1, ..., %) € R", denoted bYiX|lp, 1S Riepny >qp)1/p. For ease of
notation, we defingix|| := [X|l,. Thef., norm is defined ax|l,, = liMp_q [IXll, = MaXey X Letwy(x) denote
the Hamming weight oX, i.e., the number of non-zero elementxirLet B(m, w) denote the set of binary vectors
in {0, 1}™ whose Hamming weights are exactly equaia.e., B(m w) := {x € {0, 1}™ | wy(X) = w}. We denote
the concatenation of two vectors or stringsandv, by vy o v,.

We omit the definitions of zero-knowledge arguments and witness-indistinguishable protocols. For formal
definitions, see textbooks, e.g., by Goldreigh][

Hash functions: We briefly review the definition of collision-resistant hash function family. #gt= {hy :

M, — Dy | k € Ky} be a family of hash functions, whetd,, D,, andK,, denote a space of messages, digests,
and indices, respectively. Lé{ = {Hn}nen. Roughly speaking, iff is collision resistant, any polynomial-time
adversary cannot, on input a random indtexutput a collision of the hash function indexed koyFor a formal
definition, see, e.g., the textbook by Katz and Lind&§,[Sec. 4.6.1].

String commitment schemes: We consider a string commitment scheme in the trusted setup model. The trusted
setup model is often required to construct practicdificent cryptographic schemes such as non-interactive string
commitment schemes. In this model, we assume that a trustedpdrbnestly sets up a system parameter for
the sender and the receiver.

First7 distributes the indek of a commitment function to the sender and the receiver. Both parties then share
a common function Cogby a givenk. The scheme runs in two phase, called committing and revealing phases. In
the committing phase, the sender commitghas decision, say a string to a commitment string = Com(s, p)
with a random string and sends to the receiver. In the revealing phase, the sender gives the receiver the decision
sand the random string. The receiver verifies the validity afby computing Cor(s, p).

We require two security notions of the string commitment schemes, statistically-hiding and computationally-
binding properties. Intuitively, we say that the commitment scheme is statistically hiding, if any computationally
unbounded adversarial receiver cannot distinguish two commitment strings generated from two distinct strings.
Also, it is computationally binding, if any polynomial-time adversarial sender cannot change the committed string
after sending the commitment. See, e @3] for the formal definition.

Canonical identification schemes: Let ST = (SetUp, KG, P, V) be an identification scheme, whe$etUp is
the setup algorithm which on inpuf butputsparam KG is the key-generation algorithm which on ingpgram
outputs pk, sk, P is the prover algorithm taking inpsk V is the verifier algorithm taking inpuisaramandpk.
We sayS7 is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive attack. We employ the
definition of concurrent security if8]. In concurrent attack, the adversary will play the role of a cheating verifier
prior to impersonation and can interact manffetient prover clones concurrently. Each clone has the same secret
key, but has independent random coins and maintains its own state. W daysecure against impersonation
under concurrent attack, if any polynomial-time adversary cannot, given a random public key of a legitimate
prover, impersonate the legitimate prover. For the formal definition/3}ee [

Ad hoc anonymous identification schemes: An AID scheme allows a user to anonymously provetés mem-
bership in a group if and only if the user is an actual member of the group, where the group is formed in an ad
hoc fashion without help of the group manager. We then assume that every user regigterphislic key to the
public key infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tuffeD = (SetUp, Reg, P, V), where
SetUp is the setup algorithm which on input @utputsparam Reg is the key generation and registration algorithm
which on inputparamoutputs pk, sk), P is the prover algorithm taking inpuggaram a set of public keyR =
(pky, - .., pk), and one of the secret kegk such thapk € R, andV is the verifier algorithm taking inputsaram
andR. For more formal definition, se&][

There are two goals for security of AID schemes: Security against impersonation and anonymity. Dodis
et al. formally defined security against impersonation under passive attack. They mentioned the definition of
security against impersonation under concurrent attack. However, they did not give the formal definitigh (see [



Sec. 3.2]). Thus, we define the security notion with respect to concurrent attack. In the setting of chosen-group
attack, the adversary could force the prover to prove the membership in an arbitrary group if the prover is indeed a
member of the group. Additionally, concurrent attack allows the cheating verifier to interact with the clones of any
provers. Also, they allow the cheating prover to interact with the clones of provers, but prohibit it from interacting
with the target provers. We safl7D is secure against impersonation under concurrent chosen-group attack, if
any polynomial-time adversary cannot impersonate the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that an adversary cannot
distinguish two transcripts even if the adversary has the secret keys of all the members A&>smyanonymous
against full key exposure if any polynomial-time adversary cannot distinguish two provers with a common set of
public keys even though the adversary generates all keys of the set. The formal definitions of two notions are in
the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash functions, and construct
string commitment schemes.

Lattices and lattice problems: We first review fundamental notions of lattices, well-known lattice problems,
and a related problem.

An n-dimensional lattice iiR™ is the sel(by,...,by) = {Zien @ibi | @i € Z} of all integral combinations af
linearly independent vectols, ..., b, € R™ The sequence of vectabs, ..., b, is called abasisof the latticeL
and denoted b. For more details on lattices, see the textbook by Micciancio and GoldwaZer [

We give the definitions of well-known lattice problems, the Shortest Vector ProblemP{S\i its approxi-
mation version (SVP): The problem SVPis, given a basi8 of a latticeL, finding the shortest non-zero vector
vin L in thef, norm. The problem S\/)‘Pis, given a basi8 of a latticeL, finding a non-zero vectorin L such
that for any non-zero vectorin L, [[Vl|, < v [IX][,.

We next give the definition of the gap version of $\/R/hich is the underlying problem of lattice-based hash
functions.

Definition 3.1 (GapSVP [22]). For a gap functiory, an instance of GapSVRs a pair B, d) whereB is a basis
of a latticeL andd is a rational number. In YES input there exists a vesterL \ {0} such that|v||, < d. In NO
input, for any vectow € L \ {0}, [|v]l, > yd.

We also define the Small Integer Solution problem SIS (in&haorm), which is often considered in the
context of average-caseorst-case connections and a source of lattice-based hash functions as we see later.

Definition 3.2 (Slsgmﬁ [23)). For afixed integeq and a reap, given a matrixA € Zg*™, the problem is finding
a non-zero integer vectare Z™ such thatAz = 0 (mod q) and||z||, < 8.

The relation between SIS and GapSVP is reviewed in the next paragraph.

Lattice-based hash functions: We review the lattice-based hash functions. For a pdraeg(n) = n"°® and an
integerm = m(n) > nlog q(n), we define a family of hash functions,

H(g,m) = (a1 {0, 1™ - Z7 | A € ZZ"™},

wherefa(x) = Ax modg.

Originally, Ajtai [1] showed that the worst-case hardness of GapﬁS‘dPsome polynomial(n) is reduced
to the average-case hardness ofaﬁ{ﬁfor suitableq(n) andm(n). It is known thatH(q, m) is indeed collision
resistant for suitably chosemandm by Goldreich, Goldwasser, and HaleMil]. They observed that finding a
collision (x, x’) for fo € H(g, m) implies finding a short non-zero vectoe x-x’ such that|z]| < YmandAz =0
(modq), i.e., solving Sl;ﬁm e Recently, Micciancio and Regev showed t##{g, m) is collision resistant under

the assumption that Gapsg(l% is hard in the worst cas23].

Theorem 3.3([23)). For any polynomially bounded functiofs= g(n), m = m(n), q = q(n), with q > 4/mr¥/?g
andy = 14r+/nB, there exists a probabilistic polynomial-time reduction from sohlBapSVFﬁ in the worst case
to solvingSI%mﬁ on the average with non-negligible probability.



There were another reductions from the gap version of the covering radius problem Gapl@Rshortest
independent vector problem SlyRind the guaranteed distance decoding problem @adjusting the param-
eters/P3). It is worth that we note the results following the above results: PeiR&fshowed the reductions from
the same problems in arfy norms forp > 2. Recent papel9 Sec. 9] by Gentry, Peikert, and Vaikuntanathan
showed that the modulugsin SIS can be&(n).

A string commitment scheme: General constructions of statistically-hiding and computationally-binding string
commitment schemes are known from a family of collision-resistant hash funcBpm8][ Their constructions
used universal hash functions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash functions without the univer-
sal hash functions. The input of the commitment function isneit vectorx obtained by concatenating a random
stringp = (o1, .. .,pm2) and a message strirg= (s, ..., Sy2), i.6.,X = p o s. We then define the commitment
function on inputss andp as

Comu(s;p) := Ax modq = A'(p1,...,Pm2, St - - . » Sy2) Moda.

Lemma 3.4. For m > 10nlogq, if SIS, \m is hard on the average, the@om, is a statistically-hiding and
computationally-binding string commitment scheme in the trusted set up model. In particular, for any polynomially
bounded functionsn = m(n), g = g(n), y = y(n), with q > 4mn*?, y = 147 /nm andm > 10nlogq, Comy is a
statistically-hiding and computationally-binding string commitment scheme in the trusted setup rﬁaﬁﬁ\'ﬂ%

is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two probability density fungtions
andg, on a finite sets, we define the statistical distance between them(as, ¢,) := % Yixes l91(X) — d2(X)].

Proof. The computationally-binding property immediately follows from the collision-resistant property. We now
show the statistically-hiding property.

LetA = [a;---am]. We then have Comr(s,p) = X7 piai + X7 Sa@ism2. The following claim in 29 says
that a random subset sumafis statistically close to the uniform distribution for almost all choicesg; of

Claim 3.5([29)). LetG be some finite Abelian group and ldie some integer. For arlyelements);, ..., g € G,
considerA(Xiep; &4i, u), whereu and g; is chosen uniformly at random fro@ and {0, 1}, respectively. Then the
expectation of this statistical distance over a uniform choicg0f..,g € G is at most+/|G|/2'. In particular,
the probability that this statistical distance is more thg®| /2')/* is at most(G| /2')/4.

In our proof, we considet; as a finite Abelian groufs. Sincem > 10nlogg, (|G| /2™2)** < g™". Thus, for
all but an at most™" fraction of A = [ay, ..., am] € Zg™, we have that\(u, Yicmz pids) < q7", whereu € Zg is
uniform random variable. Assume that we have sticl$o, we have\(u, Coma (0™?; p)) < g™". By the definition
of Comp, for anys € {0, 1)™2, we haveA(u, Coma(s; p)) < g™". By the triangle inequality, we obtain

A(Comu(s1; p1), Coma(S2; p2)) < A(u, Coma(st; p2)) + A(u, Coma(sp; 02)) < 297",

for any message; ands,. This shows that, for all but negligible fraction of choiceA&f distributions of two
commitments are statistically close.
O

Using the Merkle-Damgard technique, we obtain a string commitment scheme whose commitment function is
Coma : {0, 1} x {0, 1} — Z rather than Com : {0, ™2 x {0, 1}™? — Z] as the following.

Assume that = 2r. LetA = [BC], whereB,C € Zg*". ForX € ng', we definefy : {0, 1}' - Zg as the hash
function fx(s) = Xs modg.

Letl be[nlogq] and lett : Z§ — {0, 1)' be some one-to-one function that we compadt ! efficiently. Let
pad : {0,1})* — {0, 1}* be padding function for the Merkle-Damgard construction. Applying the Merkle-Damgérd
construction tofc, we obtain new hash functidw: : {0, 1}* — Zg. The precise definitions is as follows:

Hash function hc:

1. Oninputs, obtain a padded messa§e— pad(s)
2. Chopitinto S, ..., Sk), whereS; € {0,1)""



3. Let Hp = 0 (more generally, some fixdd/ can be used)
4. Fori =1tok+1doH; « fc(t(Hi-1) o Sj_1)
5. OutputHy,;1

Our new commitment scheme is defined as follows:sfar{0, 1}* andp € {0, 1}",
Coma(s; p) := he(s) + fg(p) modq.

Lemma 3.6. If there exists a polynomial-time machine outputting a collision Gamm,, then there exists a
polynomial-time machine outputting a collision féy.

Proof. Let us assume that we obtain a collisiad), (5 0) € {0, 1}* x {0, 1} for Comy. By the assumption, we
have

he(s) + fa(o) = he(§) + fa(0) (moda).

If o = p, we haves # Sandhc(s) = he(8). Using the reduction for the Merkle-Damgard construction
(see e.g.,[15, Thm. 4.14]), we obtaiu # T € {0,1}' such thatfc(u) = fc(l). Thus, we have a collision
uop,liop e {0,1)% for fa.

Next, we assume that# j. LetS andS be padded messagess#nds; respectively. Assume th&andS
are chopped intoSy, . .., Sy) and Bo. ..., Sk), respectively. LeH, andHy be inner hash values farand Sin
the algorithm, respectively. By the definition f andH,, we obtain

he(s) = fe(t(Hy) o Sk).
he(3) = fe(t(Hi) o Sk).

Combining the above equations with the assumption, we obtain
fa(t(H) © S0 p) = fa(t(Hi) o S 0 p).
So, we have a collisiot(Hy) o Sk o p andt(l—~|k,) oSy o p € {0,1)% for fa. |

We use this commitment scheme in the rest of the paper. We often abuse the notatiomyoffooexample
Comn (1, V2; p) denotes Comy(stringv1) o stringlv,); p), where string{) is a binary representation of

4 An ldentification Scheme

Our variant §, is obtained by replacing the string commitment scheme in Stern’s ID scl8ngifh our lattice-
based one. Stern’s protocol deals with the decoding problem on binary codewords called the Syndrome Decoding
Problerff. He also proposed that an analogous scherg,imhereq is extremely small (typically 3, 5, or 7Bg,
Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the lattice problems.

We now describe the protocofSbelow. Obviously, it has perfect completeness, and at my@&ssaundness
error. By parallelizing each step of this protocoltis= w(logn) times, the soundness error becomes negligibly
small. To simplify the notations, we write Com instead of Goand we do not write random strings in Com
explicitly.

SetUp: The setup algorithm, on input' loutputs a random matrik € Zg*™.

KG: The key-generation algorithm, on inpAt chooses a random vectere B(m m/2) and computey :=
Ax modg. It outputs pk, sK = (y, x).

P, V: The common inputs ar& andy. The prover’s auxiliary input ig. They interact as follows:
Step P1: Choose a random permutatierover [m] and a random vectar € Zg' and send commitments,
Cz, andcz computed as
e Cc; = Com(r, Ar),
e C = Com(r)),

3 The Syndrome Decoding Problem is defined as follows: GAvenzy ™,y € Z3, andw € N, the problem is finding a vectare B(m, w)
such thatAx = y mod 2. We can consider this problem as a restricted version ghslS




e c3 = Com@(X +r)).
Step V1 Send a random challen@h € {1, 2, 3} to P.
Step P2
e If Ch=1, revealk, andcs. So, send = x(x) andt = n(r).
e If Ch= 2, revealk; andc;. Sendp = randu = x +r.
e If Ch= 3, revealc; andc,. Sendy = randv =r.

e If Ch=1, check that; = Com¢), cz = Com( +t), ands € B(m, m/2).
e If Ch= 2, check that; = Com(, Au —y) andcs = Com(@(u)).
e If Ch= 3, check that; = Com({y, Av) andc, = Com(g(v)).

OutputDec = 1 if all checks are passed, otherwise outpet = 0.

4.1 Statistical Zero-Knowledge Property

The proof of zero-knowledge property of the original protocol i34, [Thm. 4]. Stern left completion of the proof
as the problem for reader. Thus, we give the whole proof that Stern’s protocol is statistically zero knowledge when
Com is a statistically-hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge wh&om is a statistically-hiding and
computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulatSrwhich on inputA andy and given oracle access to
a cheating verifie€V, outputs a simulated transcript. A real transcript betweemdCV on inputA andy is
denoted byP,CV)(A,Y).

First, S chooses a random valwefrom {1, 2, 3} which is a prediction what value the cheating verifisy
will not choose. Next, it chooses a random tap€df, denoted by’. We remark that, by the assumption on
the commitment, the distributions of a challenge froW in the real interaction and that in the simulation are
statistically close.

Casec = 1. Scomputest’ € Zg such thax’ =y by using linear algebra. Next, it chooses a random permutation
=" over [m], a random vector’ € Zg', and random strings;, o5, andp;. So, it computes

e c; ;= Com@',Ar’; p}),
e C, = Com@@'(r'); p5),
e C;:= Com@' (X" +r); py).

It sends them t@V. Since the commitment scheme is statistically hiding, the distribution of a challenge from
CV is statistically close to the real distribution. Receiving a challeBgérom CV, the simulatotS computes a
transcript as follows:

e If Ch=1, S outputsL and halts.
e If Ch=2,itoutputs (’; (c},C), C}), 2, (7', X" + ', p}, p3))-
e If Ch= 3, itoutputs (’; (¢}, C),C;), 3, (7', 1", 0. p5))-
We analyze the cageh = 2. In this case, we obtain that
(P,CV)A,Y) = (r; (C1,C2, C3), 2, (m, X + T, p1, p3),
S(A.y) = (1" (61, 6, C3), 2, (', X' + 17, pf, p3)).-

Assume thatA’,r’,p],p3) = (7,1 + X = X', p1,p3). By this equation, we have thaj = ¢;, ¢; = c3, and the
responses from the simulator equal to the responses from the prover. Since the commitment is statistically hiding,
we have the distributions @} andc; are statistically close. Thus, we conclude that the both distributions of the
simulated transcript and the real transcript are statistically close.



It is straightforward to show it in the casgh = 3 by using the equatiorr{,r’) = (r,r). Thus, we omit this
part from the proof.

Casec = 2: S chooses a random permutatishover [m], two random vectors’ € Zg, x’ € B(m,m/2), and
random stringg’, p5, andp;. S computes commitments

e ¢, = Com@@’,Ar’; p}),
e ¢, = Com@(r); pfy),
e c; = Com@' (X" +r’); p3).
It sends them t@V. Receiving a challeng€h, the simulator computes a transcript as follows:
e If Ch= 1, thenS outputs (’; (], C}, C3), 1, (7' (X), '(r"), p5. p3)).
e If Ch= 2, then it outputsL and halts.
e If Ch= 3, then it outputsr(; (¢, C,,c}), 3, (7', 1", p}, p5))-
We analyze the cageh = 1. In this case, we have that
(P,CV)A,y) = (r;(C1, C2, C3), 1, (m(X), (1), p2, p3),
S(A.Y) = (15 (c1. 65, €3), L, (' (X), 7' ("), p5. 5)).-

Let y be a permutation ovenj such thaty(x’) = x. In this case, we se{,r’, o5, p3) = (¢t o, x(r), p2, pa).
By this equation, we have, = c;, ¢; = c3, and the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real transcript and the output
of the simulator are statistically close.

We omit the proof of the caseh = 3, since it is trivial.

Casec = 3: S chooses a random permutatioover [m], two random vectors € Z7', X’ € B(m, m/2), and random
stringsps, p2, andps. S computes

e ¢ := Com@r, A(X' + 1) -Y;p1),
e G := Com@(r); p2),
e C3:= Com@(X’ +r);p3).
It sends them t@V .
e If Ch=1, thenS outputs (’; (cy, Cz, C3), 1, (w(X’), 7(r), p2, p3)-
e If Ch= 2, then it outputsr(; (¢, C2, C3), 2, (7, X’ +r7)).
e If Ch= 3, it outputsL and halts.

Inthe cas€Ch = 1, we consider the equation’(r’, p5, p3) = (¢ tom, x(r), p2, p3). The remaining part of proof
is the same as that in the case 2 andCh = 1. In the cas&€h = 2, we let @, r’, p}. p}) = (7.1 + X = X', p1,p3).
The remaining part of proof is the same as that in the casd andCh = 2.

The probability that the simulatd® outputsL is at most 13+ e(n) < 1/2 wheree is some negligible function.
Additionally, by the above arguments, the distribution of the outpu8 obnditioned on it is not. is statistically
close to the distribution of the real transcript. Therefore, we have constructed the simulator and completed the
proof. O

Since the protocol is statistically zero knowledge foe 1, it has a witness-indistinguishable property.
Witness-indistinguishable property is closed under the parallel composjiofitjus, the above protocol is wit-
ness indistinguishable far= w(logn) if a statistically-hiding string commitment scheme is used.
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4.2 Security of the Protocol
We show the theorem of the security on our ID protocol, which concerns impersonation under concurrent attack.

Theorem 4.2. For any m(n) = ®(nlogn), there existg(n) = O(n?°logn) andy(n) = O(n+/logn) such that
m > 10nlogqg and g"/|B(m, m/2)| is negligible inn and the above ID scheme is secure against impersonation
under concurrent attack @apSVé is hard in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.3. For any fixedA, letY := {y € Zj | [{x € B(m,m/2) | Ax = y}| = 1}, i.e., a set of vectorg such that
the preimagex of y is uniquely determined fok. If "/ |B(m, m/2)| is negligible inn, then the probability that, if
we obtain(y, X) « KG(A), theny € Y is negligible inn.

We now provelheorem 4.

Proof ofTheorem 4 Since there exists average-gaserst-case reduction from GapSy SIS S v (Theot

[fem 3.3, we only constructA solving SI§ m v ON the average from an impersonator= (C‘V C%P) which
succeeds impersonation under concurrent attack with non-negligible probability

For the clarity, we write the transcript of interaction I§nit Ch, Rsp Deqg. Since the protocol is parallelized,
eachCmt, Ch, andRspis an ordered list which containglements. For exampl€mt= (Cmt,...,Cmg).

Given A, A chooses a random secret keye B(m,m/2) and computey = Ax. Using the secret key, it
can simulate the prover oracle perfectlfi runsCV on input @A,y) and obtains a state f@P. A feeds the
state toC® and acts as a legitimate verifier. Receiving commitméris, A chooses three challeng&h®),
Ch®, andCh® from {1, 2, 3}t uniformly at random. Rewinding with three challeng@sobtains three transcripts
(Cmt Ch?, Rsp), Ded") for i = 1,2, 3 as the results of the interactions.

By the Heavy Row LemméZ], the probability that alDed” are 1 is at least(2)°. Meanwhile, we have

Pr[3j e [1] : {CHY, ch®, Ch®) = (1,2,3)] = 1- (7/9)

by a simple calculation. Thus the probability tiithas three transcript€mt Ch”, Rsg?, Ded) fori = 1,2,3
such thaDed" = 1 for alli, and{Ch{", Ch{®, Ch{®)} = {1, 2, 3} for somej € [t] is at least £/2)° - (7/9)', which is
non-negligible since is non-negligible and w(log n).

We next show howA obtains a secret key or finds a collision of the hash functions in the string commitment
scheme by using three good transcripts. Assume#hhas three transcrlptﬁ(‘nt“) ch, Rsp), Ded)) for i =
1,2,3 such thaCmf? = Cmt? = cmt®, Ded” = 1 for alli, and{Ch (D Ch(z) Ch(g)} {1, 2,3} for some;j € [t].

Without loss of generality, we assume th}hﬁ') =i. We parsequ) asin Step V2. We have following equations
(We omit j for simplification):

c1 = Coma(¢.Au-y:pl?) = Coma(y.Av; pg’)

¢ =Coma(t;pS") = Coma ((v); pé
cs = Coma(s+t;p5) = Com (¢(u); ),
s € B(mm/2).

If there exists a distinct pair of arguments of Confl obtains a collision foA and solves Sig,, .

Next, we suppose that there exist no distinct pairs of the arguments of Cawmt 7 denote the inverse
permutation ofg. From the first equation, we have! = ¢ = y. Thus, we obtairu = (s + t) from the
third equation. Combining it with the first equation, we haxe= A(z(s) + #(t)) — y. Sincev = ¢~(t) = 7(t)
from the second equation, we obtgia- A - 7(s). Sinces € B(m, m/2), son(s) also is in B(n, m/2). Therefore A
setsx’ := n(s).

We now have to show that # x with probability at least 2. By[[emma 4.8 there must be another
secret keyx’ corresponding ty with overwhelming probability. Recall that the protocol is statistically witness
indistinguishable. Hencd}’s view is independent afA’s choice ofx with overwhelming probability. Thus we
havex’ # x with probability at least A2. In this caseAl outputsz = X — x” and solves SIg, - O

We note that the above proof is extended into multi-user settings as in the proof of Lyubasi&ysky [
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5 An Ad Hoc Anonymous ldentification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for our construction: Let
A be a system parameter. Each user has a secret;keyB(m, w) and a public keyy; = Ax;. In the AID
scheme, a group is specified by a set of public kgys. (., y|) of the members. Let; denote arl-dimensional
vector'(0,...,0,1,0,...,0) whosei-th element is 1. The prover in the group, who has a secrekeyants
convinces the verifier that fehe knows thak’ := x; o —g such thatAy; ... yi]x’ = 0 andx; € B(m, m/2).
Changing the parameters and using Stern’s protocol, the prover can convinces the verifigstighas’ such

that [Ay; ... yi]x’ = 0, the numbers of1 in X’ is m/2, and the numbers ofl in X’ is 1. Additionally, we force

the prover to prove that' is in the formx’ = x; o —g. To do so, we divide a permutatienin Step P1 into two
permutations.

Let my be a permutation ovenf] andr; be a permutation ovel][ For a permutatiomr over [m+ I], we denote
T =7mhOm if
(1 2 - m ) [ m+l m+2 - m+l
(@) @) o (M) M+ () mEm2) o mam(l))
For anyn, andz;, we have £, © )™ = n,' @ oy, For anyx, € Z™andx € Z', if 7 = 7 © m then
7t(Xn © Xt) = 7n(Xn) © 7 (Xy).
We here construct an AID scheme based on GapSVP. Similarly to the ID schi&getion 4 the protocol is

repeated = w(logn) times in parallel to achieve exponentially small soundness error. As in the previous section,
we hide randomness in Cgm

SetUp: Same asetUp of the protocol inSection 4

Reg: Same a¥G of the protocol ifSecfion 4

P, V: The common inputs ar& and f/1,...,Y;). The prover’s auxiliary input ig; for somei € [l]. Let A’ :=
[Ay: ...yl andx = x; o —g,;. We write Com instead of Cogmfor ease of notation. They interact as
follows:

Step P1: Choose random permutatiomgover [m] andn; over [I]. Letr = m,®m;. Choose a random vector
re Zg”'. Send commitmentsy, ¢, andcz as
e ¢, = Comrp, my, A'r),
e ¢, = Comfx(r)),
e C3 = Com(r(X +r)).
Step V1 Send a random challeng#h € {1,2, 3} to P.
Step P2
e If Ch=1, reveal, andcs. Sends = n(x) andt = z(r).
e If Ch= 2, reveal; andc,. Sendgy, = 7, ¢ = 7, andu = X + 1.
e If Ch= 3, revealc; andcs. Sendyy, = 7w, Yy =, andv =r.
Step V2
e If Ch=1, check that, = Com(), c3 = Com( + t), andsis in the forms, o —e;; for somej and
$ € B(m,m/2).
e If Ch= 2, check that; = Com{gn, ¢, A’u) andcs = Com((gn © ¢;)(u)).
e If Ch= 3, check that; = Comn, ¥, A’) andc, = Com({h © Yr)(V)).
OutputDec = 1 if all checks are passed, otherwise outpet = 0.

The security of the above protocol is stated as follows. We omit the proof, since it is similar to the proof of

Theorem 5.1. Letm = m(n) and q = q(n) be polynomially bounded functions satisfying the conditions that

m > 10nlogg and "/ |B(m, m/2)| is negligible inn. Assume that there exists an impersonaidhat succeeds
impersonation under concurrent chosen-group attack with non-negligible probability. Then there exists a proba-
bilistic polynomial-time algorithngA that solvesSISim e

CombiningTheorem 5.with Theorem 3.Bwe obtain the following theorem.
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Theorem 5.2. For any m(n) = ®(nlogn), there existg(n) = O(n?°logn) andy(n) = O(n+/logn) such that
g"/|B(m, m/2)| is negligible inn and the above scheme is secure against impersonation under concurrent chosen-
group attack ifGapSVIﬁy‘ is hard in the worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability of the protocol.
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A Formal Definitions

Provers and verifiers: An interactive algorithmA is a stateful algorithm that, on input an incoming message
Min and state informatioft, outputs an outgoing messalyl,: and updated sta®t (we will write (Mgy, St) «
A(Min, SP). We say thai accepts ifSt= 1 and rejects iSt= 0.

An interaction between a proverand a verifiel ends wherV either accepts or rejects. We will write

(Tr,Ded « Run[P(py,...)°%" & V(vy,...)V]

to indicate that we lel interact withV, having provided bot® andV with fresh random coins, to get a transcript
Tr and a boolean decisiddec

A.1 AdHoc Anonymous ldentification Schemes

An ad hoc anonymous identification (AID) scheme is four tul&D = (SetUp, Reg, P, V), whereSetUp is the

setup algorithm which on input'Ioutputsparam Reg is the key generation and registration algorithm which on
inputparamoutputs pk, sk), P is the prover algorithm taking inpupsaram a set of public keyR = (pk;, ..., pk),

and one of secret kesk such thapk € R, V is the verifier algorithm taking inpuggaramandR. In [7], there are

the group public-key and the group secret-key construction algorithms in the original definition. We omit these
in the above definition. There are two goals for security of AID schemes: Security against impersonation and
anonymity.

Security against impersonation under concurrent chosen-group attack: In the setting of chosen-group at-
tack, the adversary could force the prover to prove the membership in an arbitrary group if the prover is indeed a
member of the group. Additionally, concurrent attack allows the cheating verifier to interact with the clones of any
provers. Also, they allow the cheating prover to interact with the clones of provers, but prohibit it from interacting
with the target provers. _

We describe the formal definition of the security as follows. Consider the following experimeh}, ")
between the challenger and the impersondter (CV, CP).

Experiment Exp;"";gc]a(n):
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Setup Phase:The challenger obtaingaram « SetUp(1") and initializesHU,CU, TU, PS « 0, where
HU, CU, andT U denote the sets of honest users, corrupted users, and target users, respectively, and
PS denotes the set of prover's session. The impersor@tors given the security parametet and
the system parametparam

Learning Phase: The impersonato€V can query to the three oraclest, Corr, andProv.

e The oraclelnir receives input. If i € HU U CU U TU then returnsL. Otherwise, it obtains
(pk, sk) « Reg(paramr;), adds to HU, and provided with pk.

e The oracleCorr receives input. If i ¢ HU \ TU then returnsL. Otherwise, it add$to CU,
deletes in HU, and returns; to 7.

e The oracleProv receives inputR = (pk,...,pk;), i, s, andMj,. If pk ¢ Rori ¢ HU \ TU then
returnsL. (The public keys iR need not to be registered.) R(i, s) ¢ PSthen it addsRk, i, s) to
PS, picks a random coip, and sets a state of the pro#®g[(R, i, )] « (param R, sk, p). Next,
it obtains Mout, SB[(R. i, S)]) <« P(Min, SK[(R, i, 9)]). Finally, it returnsMqy.

Challenge Phase:CV outputs a set of public key& = (pk;,,...,pk,) andStp. If the indexes of the
keys{is,...,ij} ¢ HU then the challenger outputs 0 and halts. Otherwise, the challengér\dets
{i1,...,Ij} and givesStyp to CP. CP can query to the oracldsir, Corr, andProv as in the learning
phase. Finally, the challenger obtaifis,0ed « Run[CP(Styp)N"CorvProv s v(param R,)] and
outputsDec

Definition A.1. Let ATD = (SetUp, Reg, P, V) be an AID scheme andl = (CV,CP) an impersonator. Let be
a security parameter. The advantagd af attackingA7D is defined by

Advi;‘l"f.’gj.a(n) = Pr[Exp;‘(’gjﬁ(n) - 1] .

We say thatAAZD is secure against impersonation under concurrent chosen-group atahk]f: ) is negli-
gible for every polynomial-time'.

We note that our definition is the concurrent version of the soundness definitidh in [

Anonymity against full key exposure: Anonymity against full key exposure for an AID schetdd D is de-

fined by using the following experimeEkp;{‘}gge(n) between a challenger and adversaty

Experiment Exp3op k{n):

Setup Phase:The challenger runs the algorithetUp with input 1" and obtainparam The adversaryd
is given the system parametgaram

Challenge Phase: A requests a challenge by sending to the challenger the vaples<k, ), (pk, . sk, ), R).
Here the set of public keyR containspk andpk,, and Pk ,sk,) and pk, ,sk,) are valid key
pairs. The challenger chooses a randombbi {0, 1} and runs the protocol as a prover who has
sk,. (Tr,b*) « Run[P(param R, sk,) & AJ. If b = b* the challenger returns 1, otherwise returns 0.

Definition A.2. Let AI'D = (SetUp, Reg, P, V) be an AID scheme?A an adversary, anda security parameter.
The advantage afi in attackingAZD is defined by
1
AdvepEriam) = |PrExpp i) = 1] - 5|

We say thatAZD has anonymity with full key exposureﬁdv;‘}’z’;"ge(-) is negligible for every polynomial-time
A.

B Proofs
B.1 Proof of Theorem 5.1

We will constructA solving SIS, ,m With non-negligible probability by using an impersonafarhich succeeds
impersonation with non-negligible probability.
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The algorithm#A, given inputA, feedsA to the impersonataf. In the experiment, the impersonatbwill
call Init, Corr, andProv. If I calls Init with inputi, thenA chooses; at random, computeg = Ax;, and
returnsy; to 7. A can simulate the oracléSorr andProv, sinceA has the secret key corresponding to the
public keyy;.

At the end of the experimenti, will impersonate as a group which is specified by the set of the public keys
R = (y1,...,¥1). RewindingZ three timesA obtains three good transcripts as in the previous proof.

We next show howA obtains a secret key or finding a collision of the hash functions in the string commitment
scheme by using three good transcripts. Assume#hhas three transcript€mt’, CH", Rsp), Ded) for i =
1,2, 3 such thaCmt? = Cm? = Cmt?), Ded) = 1 for alli, and{Chﬁl’,Ch(jz),Ch?)} = {1, 2, 3} for somej € [t].

Without loss of generality, we assume ti@{” = i. We parseRsd’ as in Step V2. From the above argument, we
have four equations as follows (We onpifor simplification):

C1 = Coma(gn, ¢, A'U;pl7) = Coma(un, ue, A'V; o),

¢z = Com(t; p5") = Coma((¥n © Y)(v); o),

cs = Coma(s+t;p) = Coma((¢h © ¢r)(U); P2,
S =& 0 —g for somek ands, € B(m, m/2).

If there exists a distinct pair of arguments of Con¥l obtains a collision foA and solves Sig,, .

Let us assume that there exist no distinct pairs. 7Lbe an inverse permutation @f, ® ¢;. From the first
equation, we obtain the equation' = ¢,© ¢ = ¥ Oy;. Combining with the third equation, we hawe= (s+t).
Thus, we havé\’v = A’(r(s) + n(t)). From the second equation,= #(t). Hence, we obtaii\’ - 7(s) = 0. We
haver = n, © m; for some permutations, ands, over [m] and [I] respectively, since is inverse ofp, ® ¢;. Thus,
we haveA’(mn(sh) o m(—&)) = 0. That isy,w = Amn(sh). By using same argument in the previous proof, we
have thatrn(sh) # X, With probability at least 12. So,A outputsz = X, — mh(sh) as a solution for Sig;, \m.

O

C Constructions from the Cyclic/ldeal Lattice Based Hash Functions

In this section, we construct the ID scheme and the AID scheme based on thé¢idgalitattice based hash
functions. We basically follow the notations dfd].

C.1 The Cycligideal Lattice Based Hash Functions

Several families of lattice-based hash functions are known to have small description sizes 2i;[28<18].
Originally, Micciancio 1] gave the compact version of the lattice-based hash functions and proved the one-
wayness of the version. After that, Peikert and Ro28h §nd Lyubashevsky and Miccianci@d] proposed the
modified versions of the version of Micciancio and showed their collision-resistance property, independently. We
employ the notions, the notations, the definitions, and the results in Lyubashevsky and Mic@&hcmEe its
generality of the descriptions.

Let f € Z[X] be a monic and irreducible polynomial of degneeConsider the quotient ring[x]/(f). We
use the standard set of representatifgsnod f) : g € Z[X]}. In this section we identify a polynomialx) =
ag + arX + - -- + a1 X"t € Z[x]/(f) with ann-dimensional integer vecta = '(ay, . .., a,_1). We define a norm
with respect tof as follows: Forg € Z[X], ||g + (Il = |I(g mod f)||,. We write]|g||; instead of|g + (f)l;.

We note that any idedlc Z[x]/(f) defines the correspondimgdimensional integer lattick(l) € Z". Notice
that a class of the lattices representable in this way is contained in a general class of all integek (BiticeB". If
a given lattice in SVPis restricted in a clasA of lattices, we denote bj-SVPP the problem over such restricted
lattices inA. We also denote by (f) the set of lattices that are isomorphic to idealZpf] /(f). SeellLg] for the
details. We here deal with(f)-SVP}, i.e., SVP with approximation factarin the £, norm whose input lattices
are restricted im\(f).

Lyubashevsky and Micciancio constructed a family of collision-resistant hash functions based on the worst-
case hardness of(f)-SVP for suitablef.

We review whatf is suitable for the construction of Lyubashevsky and Micciancio. The propertyisf
defined as that the ring norifg||; is not much bigger thalfgl|,, for any polynomial. Formally, they captured this
property as thexpansion factoof f:

EF(f.K) = llall¢ /19l -

max
gez[X].deg@)<k(deg(f)-1)
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For example, a simple calculation shows thatF 1,k) < k and EF&"? + x™2 + ... + 1K) < 2k. We say a
polynomial f is suitable iff is a monic and irreducible i&[X] and there is a constantsuch that EF{, k) < ck
for any natural numbét. The security of the hash functions is based on the worst-case hardnedy-&VP for
a suitable polynomiaf. Seel[Lg] for more details. They employed a family of polynomials suchas 1 and
X1 4 x"=2 4 ... 4+ 1 for n such that the polynomials are irreduciblezfx].

To describe the hash functions, we prepare some notations. Define RpK]/(f) — ngn as

Rot;(a) :=[ey®a,e®4a,...,e,1®4],

where eacle is a polynomialx and the operatop denotes the product operatorZg[x]/(f). For example, if
f =x"-1orf = x"+1, Rot(a) is a circulant or skew-circulant matrix, respectively. We next déRed(f, g, ')
as a subset (ﬂgxm” (which is borrowed from17]),

ROT(f,q,n) := {A = [Rots(ay) ... Roti(aw)] | a,..., 2w € Zg}.
We now describe a simple version of a family of hash functions givelhgh [
Hy(f,q.m) = {ha (0,1 — Z{ | A € ROT(f.q,m)},

whereha(x) = Ax. We note that, foA = [Rots(a;) ... Roti(ay)] andx = X; o... o X4y, We can interpref\x as
T aeX.
Lyubashevsky and Micciancio showed the following theorenilBj.|

Theorem C.1. LetE = EF(f,3). Letmf > logq/log2andq > 2Emn2logn. Then fory = 8E2m'nlog? n, if
A(f)-SVP} is hard in the worst case theH(f, g, n7) is collision resistant.

Now, the setup algorithm on inpuf butputsA = [Rot;(a;) ... Rots(ay)] from ROT(f, g, m') uniformly at
random. The key-generation algorithm on inputchooses a random vectare B(m'n,nYn/2) uniformly at
random, computes a vectpr.= Ax, and outputsgk, sk) = (y, x).

C.2 An String Commitment Scheme

Using Hz(f, g, n), we also obtain a simple string commitment scheme. We apply the following lemma to
Hz(f,q,m) and obtain the statistically-hiding property of a string commitment scheme. This lemma is obtained
by Micciancio’s regularity lemmaZ1]

Lemma C.2. Letq be a primeg = q(n) = n®® andn an integer such thatt = m'(n) > 2loggq. Letf Zg[X]
of degreen be a suitable polynomial. The statistical distance between .., an, Z{‘:la,- ® Xj) and the uniform
distribution over the seZq[X] /( f))™+1is negligible inn, where eacla; andx; is a random variable OVELy[X] /()
and{0, 1}", respectively.

Now, we obtain the following lemma as[iemma 3.4

Lemma C.3. For any m'(n) = O(logn), there existgy(n) = ©(n'n*2logn) andy = ©(n'nlog?n), such that,
n’(n) > 4logq and for a suitable polynomiaf, Coma is a statistically-hiding and computationally-binding
string commitment scheme in the trusted setup modglfif-SVP} is hard in the worst case.

Using the Merkle-Damgard technique, we obtain the string commitment scheme whose commitment function is
Comy : {0, 1} x {0, 12 — Z{ rather than Com: {0, 1}™"2 x {0, 1}"™""/2 — Z§.

C.3 An ldentification Scheme and An Ad Hoc Identification Scheme

We obtain the ID scheme’g and the AID scheme by combining the above setup and key-generation algorithms
and the string commitment scheme with Stern’s scheme as in SEiodS One can prove the securities of the
schemes in the same manner to the proof of TheoeBandb.1

Theorem C.4. Let f be a suitable polynomial and := EF(f, 3). Letm’ = m’(n) andq = q(n) be polynomially
bounded functions such that > 4logq, g > 2Emn®2logn, andq”/ |B(m'n, nYn/2)| is negligible inn. Then for

y = 8E2m'nlog? n, if A(f)-SVP} is hard in the worst case then the ID scheﬁg?,L which uses the above setup

and key-generation algorithms and the above string commitment scheme is secure against impersonation under
concurrent attack.
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sketch.We show that if there exists an impersonafowhich succeeds impersonation under concurrent attack
with non-negligible probability, there existsA that finds a collision;, z,) for Hr(f, g, nv).

GivenA € ROT(f, g,nY), A chooses a random secret keg B(m'n,n'n/2) and computy = AX. A runs
I oninputs A, y). We note thatA can simulate the oracl€®~v andProv, sinceA has the secret key. A runs
T three times with random challenges and a fixed random tape. Thetains three transcript€mt?, Ch,
Rsp), Ded) fori = 1, 2, 3 as the results of the interactions betwgesndA. Note thatCm{Y = Cm{? = Cm{®
sinceA fixes the random tape to wotk. By the assumption, with non-negligible probabilitf, obtains good
transcripts such thdbed” = (Ded’,...,Ded)) are all 1 for evenyi. Then, A can findx’ from (A,y) or find
(s.p) # (S, p’) such that Com(s; p) = Coma(S'; p’) by using the fact thaEmf{®) = Cmt? = Cmf®. In the former
case, we can show that # x with probability at least A2 as in the proof A outputs K, X').
Sincex, X’ € B(nm'n,nYn/2) C {0, 1}™", A indeed finds a collision fofH(f, g, n7). In the latter caseAd computes
z# 7 € {0,1)™" from (s,p) and @, p’) such that Com(s;p) = Az and Com(s’;p’) = Az’. Thus, A outputs
(z,7) as a collision forH(f, g, ). O

Theorem C.5. Let f be a suitable polynomial andl := EF(f, 3). Letm’ = m’(n) andq = q(n) be polynomially
bounded functions such that > 4logg, q > 2Emn*?logn, andq"/ |B(nm'n, m'n/2)| is negligible inn. Then

for y = 8E2m'nlog?n, if A(f)-SVP} is hard in the worst case then the AID scheme which uses the above setup
and key-generation algorithms and the above string commitment scheme is secure against impersonation under
concurrent attack.

sketch.We show that if there exists an impersonafowhich succeeds impersonation under concurrent chosen-
group attack with non-negligible probability, there exigtshat finds a collision4;, z,) for Hz(f, g, n).

The algorithmA, given inputA € ROT(f, g, nY), feedsA to the impersonatof. In the experiment, the
impersonatod will call Init, Corr, andProv. If I callsInit with inputi, thenA chooses; € B(m'n,m'n/2) at
random, computeg; := Ax;, and returng; to 7. A can correctly simulate the oracl€rr andProv, sinceA
has the secret key corresponding to the public key.

At the end of the experiment;, will impersonate as a group which is specified by the set of public keys
R = (Y1,...,Y)). Rewinding? three times,A obtains §,p) # (S,p’) such that Com(s;p) = Comp(S’;p’) or a
vectort = t, o ty such that Ay, ... yj]t = 0, wherety, € {0, 1}™", t, = - for somek, andt, € B(m'n,m'n/2) as
in the proofs ofTheorem 4.andTheorem 5.l(sedAppendix B).

In the former casefl computes # z’ € {0, 1}™" such that Com(s; p) = Az and Com(s’; p’) = Az’. Hence,

A outputs ¢, 7’) as a collision forH(f, g, nY).

In the latter case, we havsty, = yx. By the same argument as in the proofldfeorem 5.1 we have that

th # Xk with probability at least 2. Hence, A outputs K, t) as a collision forHr(f, g, nr). O
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