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Abstract
In this paper, we show that two variants of Stern’s identification scheme [IEEE Transaction on Information

Theory ’96] are provably secure against concurrent attack under the assumptions on theworst-casehardness of
lattice problems. These assumptions are weaker than those for the previous lattice-based identification schemes
of Micciancio and Vadhan [CRYPTO ’03] and of Lyubashevsky [PKC ’08]. We also construct efficient ad hoc
anonymous identification schemes based on the lattice problems by modifying the variants.

Keywords: lattice-based cryptography, identification schemes, concurrent security, ad hoc anonymous iden-
tification schemes.

1 Introduction

Many researchers have so far developed cryptographic schemes based on combinatorial problems related to knap-
sacks [20, 30], codes [32, 34], and lattices [1, 2, 12, 14], due to the intractability of the underlying problems, the
efficiency of primitive operations, and the threat of quantum computers to number-theoretic schemes [33].

The cryptographic schemes based on combinatorial problems usually assume theaverage-casehardness of
the underlying problem because they have to deal with randomly generated cryptographic instances such as keys,
plaintexts, and ciphertexts. This implies security risk in such schemes since it is generally hard to show their
average-case hardness. In fact, several attacks against such schemes were found in practical settings [31, 16, 4, 25].
The cryptographic schemes based only on the average-case hardness are more likely to be at risk of these kinds of
attacks.

It is therefore significant to guarantee the security under the worst-case hardness. Ajtai [1] showed that the
average-case hardness of some lattice problem is equivalent to its worst-case hardness. His seminal result opened
the way to cryptographic schemes based on the worst-case hardness of lattice problems. Several lattice-based
schemes were proposed such as public-key encryption schemes, e.g., by Ajtai and Dwork [2], and hash func-
tions [1, 11, 23].

Among varieties of lattice-based cryptographic schemes, there are very few results on the identification (ID)
schemes based on the worst-case hardness of lattice problems. For example, Micciancio and Vadhan proposed
ID schemes based on the worst-case hardness of lattice problems, such as the gap versions of the Shortest Vector
Problem. These schemes are obtained from their statistical zero-knowledge protocol with efficient provers [24].
Recently, Lyubashevsky also constructed lattice-based ID schemes secure against active attack [17]. Unfortu-
nately, the approximation factors of the underlying problems in their schemes are large for practical use as noted
in [17, Sec. 5] since security parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e., the assumptions on lattice
problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we call S+
GL and S+

C/IL , of Stern’s ID scheme [34]. These variants
are secure againstconcurrentattack1 under the assumptions on theworst-casehardness of lattice problems, while
∗Department of Mathematical and Computing Sciences, Tokyo Institute of Technology. W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo

152-8552, Japan.{keisuke,kawachi,xagawa5}@is.titech.ac.jp.
1 In active attack, an adversary could interact with the prover prior to impersonation. Inconcurrent attack, an adversary could interact with

many different prover “clones” concurrently prior to impersonation. Each clone has the same secret key, but has independent random coins
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Stern’s original scheme assumes theaverage-casehardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only againstpassiveattack. The underlying
problems of S+GL and S+

C/IL are the gap version of the Shortest Vector Problem with approximation factorÕ(n)

(GapSVP2
Õ(n)

) and the Shortest Vector Problem for ideal lattices with approximation factorÕ(n) (Λ( f )-SVP∞
Õ(n)

),

respectively, wherẽO(g(n)) = O(g(n) poly logg(n)) for a functiong in n, The assumptions are weaker than those
for the previous lattice-based ID schemes [24, 17]. We stress that such weaker assumptions will take a step for
practical use of lattice-based ID schemes.

Moreover, we show that our variants yield efficient ad hoc anonymous identification schemes (AID schemes).
In an AID scheme, which introduced by Dodis, Kiayias, Nicolosi, and Shoup [7], the protocol is done by two
parties, a prover and verifier, but we implicitly suppose an ad hoc group. Given public keys of all members of
the group to the verifier (and the prover), the goal is to convince the verifier that the prover belongs to the group,
without being specified who the prover is of the group, if and only if the prover is an actual member of the
group. We formally define a concurrent version of the security notion, the security against impersonation under
concurrent chosen-group attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of GapSVP2

Õ(n)
andΛ( f )-SVP∞

Õ(n)
. To authors’ best knowledge, this is the first

non-trivial construction under the assumption of the worst-case hardness of lattice problems.

1.2 Main Ideas

In this section, we only discuss the ID scheme S+
GL based on GapSVP. We first construct a string commitment

scheme based on the lattice problem which will be used in ID schemes. Then we will describe the idea of the proof
on concurrent security of the variant. Finally, we give a sketch of our construction method of an AID scheme.

Before giving the overview, we review the underlying problem GapSVPγ and the fundamental problem, the
Small Integer Solution Problem (SISq,m,β), on which our variants are directly based. The informal definitions and
the relationship of two problems are given as follows:

• SISq,m,β: Given a randomn-by-mmatrixA whose elements are inZq, the problem is finding anm-dimensional
integral non-zero vectorz such thatAz ≡ 0 (mod q) and‖z‖2 ≤ β.

• GapSVP2γ: Given ann-dimensional latticeL and a rational numberd, the problem is outputting YES if there
exists a non-zero vectorv ∈ L such that‖v‖2 ≤ d, or NO if for any non-zero vectorv ∈ L ‖v‖2 > γd.

• ([23]) For suitableq andm, if there exists a probabilistic polynomial-time algorithm which solves SISq,m,β

on the average then there exists a probabilistic polynomial-time algorithm which solves GapSVP2
Õ(βn1/2)

in
the worst case.

As in Lyubashevsky’s result [17], we use the above relationship for our security reduction. Hence we mainly deals
with SIS instead of GapSVP.

We simply obtain the lattice-based hash functions as in [11]: Choose a random matrixA ∈ Zn×m
q . For anyx ∈

{0,1}m, a hash value isfA(x) := Ax modq. A collision (x, x′) of the hash functionfA implies a solutionz = x− x′

of SISq,m,
√

m. Thus, the security of the hash functions is based on the worst-case hardness of GapSVP2
Õ(
√

nm)
.

String commitment schemes: We construct a string commitment scheme from lattice-based hash functions.
General constructions of string commitment schemes from collision-resistant hash functions were shown by
Damgård, Pedersen, and Pfizmann [5] and Halevi and Micali [13]. Stern also constructed a string commitment
scheme from collision-resistant hash functions in [34, Sec. III-A]: Let h be a hash function. Given a strings and
a random stringρ, a commitment ish(ρ ◦ (ρ ⊕ s)), where◦ and⊕ denote the concatenation and XOR operators,
respectively. However, its hiding property was not shown. We construct a string commitment scheme by a more
direct and simpler way than the general one and Stern’s one: Givens andρ, a commitment ish(ρ ◦ s), whereh
is a lattice-based hash function. The binding property simply follows from the collision-resistance property ofh.
We derive its hiding property fromε-regularity ofh for some negligible functionε (see, e.g., [19, Sec. 4.1]). As
mentioned in the above, we have collision-resistant lattice-based hash functions based on the worst-case hardness
of GapSVP, while Stern assumed the existence of collision-resistant hash function.

and maintains its own state. After interacting with many clones, the adversary tries impersonation.
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ID schemes (A0,A1,A ∈ Zn×m
q )

Param. Public key Relation γ in GapSVP2γ Comm. cost Errors
MV+

GL [24] – A0,A1 A0x = 0 or A1x = 0 Õ(n1.5) t · Õ(n) 1-sided
LGL [17] (A) A, y Ax = y Õ(n2) t · Õ(n) 2-sided
S+

GL A y Ax = y andwH(x) = m/2 Õ(n) t · Õ(n) 1-sided

AID schemes (A i,0,A i,1,A ∈ Zn×m
q )

Base Param. Set of pks Relation γ in GapSVP2γ Comm. cost Errors
MV+

GL [24] – {A i,0,A i,1}i=1,...,l A i,0x = 0 or A i,1x = 0 Õ(n1.5) tl · Õ(n) 1-sided
LGL [17] A y1, . . . , yl Ax = yi Õ(n2) tl · Õ(n) 2-sided
S+

GL A y1, . . . , yl Ax = yi andwH(x) = m/2 Õ(n) t · Õ(l + n) 1-sided

Table 1: Comparisons among ID schemes and AID schemes. A secret keysk is x ∈ {0,1}m. The factorn denotes
the security parameter. We denote the Hamming weight ofx by wH(x). Assume that the protocols are repeatedt
times in parallel for reducing errors. In the table for AID schemes,l denotes the number of the members in the
group. Note that the parameters in ideal-lattice-based versions are almost same as those in general-lattice-based
versions.

Our ID scheme and its concurrent security: In Stern’s scheme and our variant, a prover has a binary vector
x with fixed Hamming weight as his/her secret key. We also feed to the prover and the verifier a matrixA as a
system parameter and a vectory as the public key corresponding tox. The task of the prover is to convince the
verifier that he/she knows a correct secret keyx satisfying a relationAx = y andx has a valid weight.

In Stern’s protocol [34], the prover computes three commitments and sends them to the verifier. The verifier
sends a random challenge to the prover. The prover reveals two of three commitments corresponding to the
challenge. He constructed the knowledge extractor which computes a collision of a hash function in a string
commitment scheme or a secret key corresponding to the target public key if a passive adversary responds correctly
to any challenges after sending commitments.

One of standard strategies to achieve concurrent security is to prove that a public key corresponds to multiple
secret keys and that the protocol is witness indistinguishable (WI) [8] and proof-of-knowledge: The reduction
algorithm generatesskandpkand runs the adversary onpkby simulating the prover withsk. Using the knowledge
extractor of the protocol, the algorithm obtains anothersk′ corresponding topk with probability at least 1/2 since
the protocol is WI. The algorithm then solves the underlying problem by usingpk, sk, andsk′.

In our reduction, when the algorithm is givenA, it generates a secret keyx and a public keyy = Ax, and
feedsA andy to the adversary. Note that the algorithm can simulate the prover withA andx that the adversary
concurrently accesses. Using the knowledge extractor for the adversary in Stern’s proof, the algorithm obtains
a collision of a string commitment scheme or a secret keyx′ such thatx′ , x andAx′ = y, differently from
the general strategy. In the former case, the algorithm outputs the collision (s, s′) of a hash functionhA in the
string commitment scheme. Thus, the solution for SIS is obtained byz = s− s′. In the latter case, the condition
x , x′ will be satisfied with probability at least 1/2 by witness indistinguishability of Stern’s protocol. Thus, the
algorithm has the solutionz = x − x′ for SIS. Thè 2 norm of both solutions is at most

√
m = Õ(n1/2). From the

relationship between SIS and GapSVP the assumption is the worst-case hardness of GapSVP2
Õ(n)

.

AID schemes: Our construction for AID schemes also has the following structure: Each ofl members in the
ad hoc group has a vectorxi (i = 1, . . . , l). Then, the common inputs of the scheme are a system parameterA
and a set of public keysy1, . . . , yl of the members, which satisfyyi = Ax i (i = 1, . . . , l). We can show that, by
Stern’s protocol, the prover can anonymously convince the verifier that the prover knowsxi corresponding to one
of y1, . . . , yl , since he/she knows a new vectorx′ such that [A y1 . . . yl ]x′ = 0. (This idea is due to Wu, Chen,
Wang, and Wang [35], who presented an AID scheme from certain combinatorial problem.) Additionally, we force
the prover to prove that the positions of+1 and−1 in x′ are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security of their scheme.

1.3 Comparison with Other Lattice-based Schemes

ID schemes: In [24], Micciancio and Vadhan proposed a statistical zero-knowledge and proof-of-knowledge
protocol for GapSVP. Combining it with lattice-based hash functions, we obtain an ID scheme which is secure

3



againstpassive attackbased on SISq,m,Õ(n), which can be reduced from GapSVP2
Õ(n1.5)

.
In the scheme, the prover and the verifier are given a matrixA as a common input, and the prover has a binary

vectorx as secret information. The task of the prover is to convince the verifier that he/she knowsx satisfying the
relations thatAx = 0 andx is relatively short. It seems difficult to directly simulate the prover since a simulator
has to prepare a dummy short vectorx′ satisfyingAx′ = 0, which is the task of SIS itself. Thus, we cannot
straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID scheme (MV+
GL for short) based on the

worst-case hardness of lattice problems by Micciancio and Vadhan’s ID scheme as noted in [24, Sec. 5]. In
particular, applying techniques of De Santis, Di Crescenzo, Persiano, and Yung [6] and of Feige and Shamir [8],
a modification of the ID scheme can be proven to have concurrent security2 based on the same problem as that in
the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on lattice problems [17]; we call
it LGL for short. In his protocol, the prover proves, givenA andy, he/she hasx ∈ {0,1}m such thatAx = y. Using
an active adversary, his knowledge extractor obtains another vectorx′ such thatAx′ = y and the length ofx′ is at
mostO(m1.5) = Õ(n1.5). Thus, in the LGL scheme, the underlying problem is SISq,m,Õ(n1.5), which can be reduced
from GapSVP2

Õ(n2)
.

As mentioned in the previous section, the assumption of S+
GL is the worst-case hardness of GapSVP2

Õ(n)
, which

is weaker than those of MV+GL and LGL. This improvement is obtained by the condition that the knowledge
extractor outputs another secret keyx′ whose length is at most

√
m = Õ(

√
n). Our schemes has 1-sided error

(perfect completeness and soundness error), while LGL has 2-sided error (completeness and soundness errors). As
a summary, seeTable 1.

AID schemes: By taking OR ofl statements [6], we can straightforwardly obtain MV+GL-based and LGL-based
AID schemes, whose security are based on the worst-case hardness of lattice problems. We feed onlypk1, . . . , pkl
as the common inputs to the prover and the verifier. In this case, the prover convinces the verifier that he/she has
a secret key corresponding to one of public keys,pki .

However, each of these simple modifications requires a large overhead cost involving the size of the ad hoc
group. Letl be the number of the members of the group andn the security parameter. The protocol is run int
times in parallel to reduce the errors. The communication costs of the MV+

GL-based and LGL-based schemes are
tl · Õ(n). The size of a set of the public keys isl · Õ(n2) andÕ(n2) + l · Õ(n) in the modified versions of MV+GL and
LGL, respectively.

On AID schemes, the LGL-based and our schemes require manyvectorsproportional to the size of the group,
while the MV+

GL-based scheme requires manymatricesproportional to the size of the group (seeTable 1). Ad-
ditionally, the communication cost of our schemes ist · Õ(n + l), while those in the MV+GL-based and LGL-based
schemes aretl · Õ(n). This shows the advantage of our scheme on the efficiency.

1.4 Organization

The rest of this paper is organized as follows. InSection 2, we review basic notations and notions, and the
cryptographic schemes we consider. (The formal definition of AID schemes is inAppendix A.1.) In Section 3,
we review lattice-based hash functions and give a commitment scheme based on the lattice-based hash functions
for our ID and AID schemes. InSection 4, we construct the ID scheme by combining the framework of Stern’s
scheme with our string commitment scheme. We present the AID scheme inSection 5.

In this paper, due to lack of space, we only describe the schemes based on GapSVP since the construction on
Λ( f )-SVP follows from a similar strategy to that on GapSVP. We discuss the constructions onΛ( f )-SVP in the
full paper.

2 Preliminaries

Basic notions and notations: We denote byn the security parameter of cryptographic schemes throughout this
paper, which corresponds to the rank of the underlying lattice problems. We say that a problem is hard in the

2 Combining ORing technique by De Santis et al. [6] and discarding technique by Feige and Shamir [8], we derive a construction technique
for ID schemes secure against active attack. Moreover, we can construct concurrently secure ID schemes by the same technique as a folklore
says.
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worst case if there exists no probabilistic polynomial-time algorithm solves the problem in the worst case with
non-negligible probability. We sometimes useÕ(g(n)) for any functiong in n asO(g(n)·polylog(g(n))). We assume
that all random variables are independent and uniform. For a positive integern, let [n] denote a set{1,2, . . . , n}.

For anyp ≥ 1, the`p norm of a vectorx = t(x1, . . . , xn) ∈ Rn, denoted by‖x‖p, is (
∑

i∈[n] xp
i )1/p. For ease of

notation, we define‖x‖ := ‖x‖2. The`∞ norm is defined as‖x‖∞ = limp→∞ ‖x‖p = maxi∈[n] |xi |. Let wH(x) denote
the Hamming weight ofx, i.e., the number of non-zero elements inx. Let B(m,w) denote the set of binary vectors
in {0,1}m whose Hamming weights are exactly equal tow, i.e., B(m,w) := {x ∈ {0,1}m | wH(x) = w}. We denote
the concatenation of two vectors or stringsv1 andv2 by v1 ◦ v2.

We omit the definitions of zero-knowledge arguments and witness-indistinguishable protocols. For formal
definitions, see textbooks, e.g., by Goldreich [10].

Hash functions: We briefly review the definition of collision-resistant hash function family. LetHn = {hk :
Mn → Dn | k ∈ Kn} be a family of hash functions, whereMn, Dn, andKn denote a space of messages, digests,
and indices, respectively. LetH = {Hn}n∈N. Roughly speaking, ifH is collision resistant, any polynomial-time
adversary cannot, on input a random indexk, output a collision of the hash function indexed byk. For a formal
definition, see, e.g., the textbook by Katz and Lindell [15, Sec. 4.6.1].

String commitment schemes: We consider a string commitment scheme in the trusted setup model. The trusted
setup model is often required to construct practically efficient cryptographic schemes such as non-interactive string
commitment schemes. In this model, we assume that a trusted partyT honestly sets up a system parameter for
the sender and the receiver.

FirstT distributes the indexk of a commitment function to the sender and the receiver. Both parties then share
a common function Comk by a givenk. The scheme runs in two phase, called committing and revealing phases. In
the committing phase, the sender commits his/her decision, say a strings, to a commitment stringc = Comk(s; ρ)
with a random stringρ and sendsc to the receiver. In the revealing phase, the sender gives the receiver the decision
sand the random stringρ. The receiver verifies the validity ofc by computing Comk(s; ρ).

We require two security notions of the string commitment schemes, statistically-hiding and computationally-
binding properties. Intuitively, we say that the commitment scheme is statistically hiding, if any computationally
unbounded adversarial receiver cannot distinguish two commitment strings generated from two distinct strings.
Also, it is computationally binding, if any polynomial-time adversarial sender cannot change the committed string
after sending the commitment. See, e.g., [13] for the formal definition.

Canonical identification schemes: Let SI = (SetUp,KG,P,V) be an identification scheme, whereSetUp is
the setup algorithm which on input 1n outputsparam, KG is the key-generation algorithm which on inputparam
outputs (pk, sk), P is the prover algorithm taking inputsk, V is the verifier algorithm taking inputsparamandpk.
We saySI is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive attack. We employ the
definition of concurrent security in [3]. In concurrent attack, the adversary will play the role of a cheating verifier
prior to impersonation and can interact many different prover clones concurrently. Each clone has the same secret
key, but has independent random coins and maintains its own state. We saySI is secure against impersonation
under concurrent attack, if any polynomial-time adversary cannot, given a random public key of a legitimate
prover, impersonate the legitimate prover. For the formal definition, see [3].

Ad hoc anonymous identification schemes: An AID scheme allows a user to anonymously prove his/her mem-
bership in a group if and only if the user is an actual member of the group, where the group is formed in an ad
hoc fashion without help of the group manager. We then assume that every user registers his/her public key to the
public key infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tupleAID = (SetUp,Reg,P,V), where
SetUp is the setup algorithm which on input 1n outputsparam, Reg is the key generation and registration algorithm
which on inputparamoutputs (pk, sk), P is the prover algorithm taking inputsparam, a set of public keysR =

(pk1, . . . , pkl), and one of the secret keysski such thatpki ∈ R, andV is the verifier algorithm taking inputsparam
andR. For more formal definition, see [7].

There are two goals for security of AID schemes: Security against impersonation and anonymity. Dodis
et al. formally defined security against impersonation under passive attack. They mentioned the definition of
security against impersonation under concurrent attack. However, they did not give the formal definition (see [7,

5



Sec. 3.2]). Thus, we define the security notion with respect to concurrent attack. In the setting of chosen-group
attack, the adversary could force the prover to prove the membership in an arbitrary group if the prover is indeed a
member of the group. Additionally, concurrent attack allows the cheating verifier to interact with the clones of any
provers. Also, they allow the cheating prover to interact with the clones of provers, but prohibit it from interacting
with the target provers. We sayAID is secure against impersonation under concurrent chosen-group attack, if
any polynomial-time adversary cannot impersonate the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that an adversary cannot
distinguish two transcripts even if the adversary has the secret keys of all the members. We sayAID is anonymous
against full key exposure if any polynomial-time adversary cannot distinguish two provers with a common set of
public keys even though the adversary generates all keys of the set. The formal definitions of two notions are in
the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash functions, and construct
string commitment schemes.

Lattices and lattice problems: We first review fundamental notions of lattices, well-known lattice problems,
and a related problem.

An n-dimensional lattice inRm is the setL(b1, . . . ,bn) = {∑i∈[n] αibi | αi ∈ Z} of all integral combinations ofn
linearly independent vectorsb1, . . . ,bn ∈ Rm. The sequence of vectorsb1, . . . , bn is called abasisof the latticeL
and denoted byB. For more details on lattices, see the textbook by Micciancio and Goldwasser [22].

We give the definitions of well-known lattice problems, the Shortest Vector Problem (SVPp) and its approxi-
mation version (SVPpγ): The problem SVPp is, given a basisB of a latticeL, finding the shortest non-zero vector
v in L in the`p norm. The problem SVPpγ is, given a basisB of a latticeL, finding a non-zero vectorv in L such
that for any non-zero vectorx in L, ‖v‖p ≤ γ ‖x‖p.

We next give the definition of the gap version of SVPp
γ , which is the underlying problem of lattice-based hash

functions.

Definition 3.1 (GapSVPp
γ [22]). For a gap functionγ, an instance of GapSVPp

γ is a pair (B,d) whereB is a basis
of a latticeL andd is a rational number. In YES input there exists a vectorv ∈ L \ {0} such that‖v‖p ≤ d. In NO
input, for any vectorv ∈ L \ {0}, ‖v‖p > γd.

We also define the Small Integer Solution problem SIS (in the`p norm), which is often considered in the
context of average-case/worst-case connections and a source of lattice-based hash functions as we see later.

Definition 3.2 (SISp
q,m,β [23]). For a fixed integerq and a realβ, given a matrixA ∈ Zn×m

q , the problem is finding
a non-zero integer vectorz ∈ Zm such thatAz ≡ 0 (mod q) and‖z‖p ≤ β.

The relation between SIS and GapSVP is reviewed in the next paragraph.

Lattice-based hash functions: We review the lattice-based hash functions. For a primeq = q(n) = nO(1) and an
integerm = m(n) > n logq(n), we define a family of hash functions,

H(q,m) = { fA : {0,1}m→ Zn
q | A ∈ Zn×m

q },
where fA(x) = Ax modq.

Originally, Ajtai [1] showed that the worst-case hardness of GapSVP2
γ for some polynomialγ(n) is reduced

to the average-case hardness of SIS2
q,m,n for suitableq(n) andm(n). It is known thatH(q,m) is indeed collision

resistant for suitably chosenq andm by Goldreich, Goldwasser, and Halevi [11]. They observed that finding a
collision (x, x′) for fA ∈ H(q,m) implies finding a short non-zero vectorz = x−x′ such that‖z‖ ≤ √mandAz ≡ 0
(mod q), i.e., solving SIS2

q,m,
√

m
. Recently, Micciancio and Regev showed thatH(q,m) is collision resistant under

the assumption that GapSVP2
Õ(n)

is hard in the worst case [23].

Theorem 3.3([23]). For any polynomially bounded functionsβ = β(n), m = m(n), q = q(n), with q ≥ 4
√

mn3/2β
andγ = 14π

√
nβ, there exists a probabilistic polynomial-time reduction from solvingGapSVP2γ in the worst case

to solvingSIS2
q,m,β on the average with non-negligible probability.
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There were another reductions from the gap version of the covering radius problem GapCRPγ, the shortest
independent vector problem SIVPγ, and the guaranteed distance decoding problem GDDγ by adjusting the param-
eters [23]. It is worth that we note the results following the above results: Peikert [27] showed the reductions from
the same problems in anỳp norms forp ≥ 2. Recent paper [9, Sec. 9] by Gentry, Peikert, and Vaikuntanathan
showed that the modulusq in SIS can beÕ(n).

A string commitment scheme: General constructions of statistically-hiding and computationally-binding string
commitment schemes are known from a family of collision-resistant hash functions [5, 13]. Their constructions
used universal hash functions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash functions without the univer-
sal hash functions. The input of the commitment function is anm-bit vectorx obtained by concatenating a random
stringρ = (ρ1, . . . , ρm/2) and a message strings = (s1, . . . , sm/2), i.e.,x = ρ ◦ s. We then define the commitment
function on inputssandρ as

ComA(s; ρ) := Ax modq = At(ρ1, . . . , ρm/2, s1, . . . , sm/2) modq.

Lemma 3.4. For m > 10n logq, if SISq,m,
√

m is hard on the average, thenComA is a statistically-hiding and
computationally-binding string commitment scheme in the trusted set up model. In particular, for any polynomially
bounded functionsm = m(n), q = q(n), γ = γ(n), with q ≥ 4mn3/2, γ = 14π

√
nm, andm > 10n logq, ComA is a

statistically-hiding and computationally-binding string commitment scheme in the trusted setup model ifGapSVP2γ
is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two probability density functionsφ1

andφ2 on a finite setS, we define the statistical distance between them as∆(φ1, φ2) := 1
2

∑
x∈S |φ1(x) − φ2(x)|.

Proof. The computationally-binding property immediately follows from the collision-resistant property. We now
show the statistically-hiding property.

Let A = [a1 · · · am]. We then have ComA(s; ρ) =
∑m/2

i=1 ρiai +
∑m/2

i=1 siai+m/2. The following claim in [29] says
that a random subset sum ofai is statistically close to the uniform distribution for almost all choices ofai .

Claim 3.5 ([29]). LetG be some finite Abelian group and letl be some integer. For anyl elementsg1, . . . ,gl ∈ G,
consider∆(

∑
i∈[l] aigi ,u), whereu andai is chosen uniformly at random fromG and {0,1}, respectively. Then the

expectation of this statistical distance over a uniform choice ofg1, . . . , gl ∈ G is at most
√
|G| /2l . In particular,

the probability that this statistical distance is more than(|G| /2l)1/4 is at most(|G| /2l)1/4.

In our proof, we considerZn
q as a finite Abelian groupG. Sincem> 10n logq, (|G| /2m/2)1/4 ≤ q−n. Thus, for

all but an at mostq−n fraction ofA = [a1, . . . ,am] ∈ Zn×m
q , we have that∆(u,

∑
i∈[m/2] ρiai) ≤ q−n, whereu ∈ Zn

q is
uniform random variable. Assume that we have suchA. So, we have∆(u,ComA(0m/2; ρ)) ≤ q−n. By the definition
of ComA , for anys ∈ {0,1}m/2, we have∆(u,ComA(s; ρ)) ≤ q−n. By the triangle inequality, we obtain

∆(ComA(s1; ρ1),ComA(s2; ρ2)) ≤ ∆(u,ComA(s1; ρ2)) + ∆(u,ComA(s2; ρ2)) ≤ 2q−n,

for any messages1 and s2. This shows that, for all but negligible fraction of choice ofA, distributions of two
commitments are statistically close.

�

Using the Merkle-Damgård technique, we obtain a string commitment scheme whose commitment function is
ComA : {0,1}∗ × {0,1}m/2→ Zn

q rather than ComA : {0,1}m/2 × {0,1}m/2→ Zn
q as the following.

Assume thatm = 2r. Let A = [B C], whereB,C ∈ Zn×r
q . ForX ∈ Zn×l

q , we definefX : {0,1}l → Zn
q as the hash

function fX(s) = Xs modq.
Let l be

⌈
n logq

⌉
and lett : Zn

q→ {0,1}l be some one-to-one function that we computet andt−1 efficiently. Let
pad : {0,1}∗ → {0,1}∗ be padding function for the Merkle-Damgård construction. Applying the Merkle-Damgård
construction tofC, we obtain new hash functionhC : {0,1}∗ → Zn

q. The precise definitions is as follows:

Hash function hC:

1. On inputs, obtain a padded messageS← pad(s)

2. Chop it into (S0, . . . ,Sk), whereSi ∈ {0,1}r−l
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3. Let H0 = 0 (more generally, some fixedIV can be used)

4. For i = 1 tok + 1 doHi ← fC(t(Hi−1) ◦ Si−1)

5. OutputHk+1

Our new commitment scheme is defined as follows: fors ∈ {0,1}∗ andρ ∈ {0,1}r ,

ComA(s; ρ) := hC(s) + fB(ρ) modq.

Lemma 3.6. If there exists a polynomial-time machine outputting a collision forComA , then there exists a
polynomial-time machine outputting a collision forfA .

Proof. Let us assume that we obtain a collision (s, ρ), (s̃, ρ̃) ∈ {0,1}∗ × {0,1}r for ComA . By the assumption, we
have

hC(s) + fB(ρ) ≡ hC(s̃) + fB(ρ̃) (mod q).

If ρ = ρ̃, we haves , s̃ and hC(s) = hC(s̃). Using the reduction for the Merkle-Damgård construction
(see e.g., [15, Thm. 4.14]), we obtainu , ũ ∈ {0,1}r such that fC(u) = fC(ũ). Thus, we have a collision
u ◦ ρ, ũ ◦ ρ ∈ {0,1}2r for fA .

Next, we assume thatρ , ρ̃. Let S andS̃ be padded messages ofs and s̃, respectively. Assume thatS andS̃
are chopped into (S0, . . . ,Sk) and (S̃0, . . . , S̃k′), respectively. LetHk andH̃k′ be inner hash values fors and s̃ in
the algorithm, respectively. By the definition ofHk andH̃k′ , we obtain

hC(s) = fC(t(Hk) ◦ Sk),

hC(s̃) = fC(t(H̃k′ ) ◦ S̃k′).

Combining the above equations with the assumption, we obtain

fA(t(Hk) ◦ Sk ◦ ρ) = fA(t(H̃k′) ◦ S̃k′ ◦ ρ̃).

So, we have a collisiont(Hk) ◦ Sk ◦ ρ andt(H̃k′ ) ◦ S̃k′ ◦ ρ̃ ∈ {0,1}2r for fA . �

We use this commitment scheme in the rest of the paper. We often abuse the notation of ComA . For example
ComA(v1, v2; ρ) denotes ComA(string(v1) ◦ string(v2); ρ), where string(v) is a binary representation ofv.

4 An Identification Scheme

Our variant S+GL is obtained by replacing the string commitment scheme in Stern’s ID scheme [34] with our lattice-
based one. Stern’s protocol deals with the decoding problem on binary codewords called the Syndrome Decoding
Problem3. He also proposed that an analogous scheme inZq, whereq is extremely small (typically 3, 5, or 7) [34,
Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the lattice problems.

We now describe the protocol S+
GL below. Obviously, it has perfect completeness, and at most 2/3 soundness

error. By parallelizing each step of this protocol int = ω(logn) times, the soundness error becomes negligibly
small. To simplify the notations, we write Com instead of ComA and we do not write random strings in Com
explicitly.

SetUp: The setup algorithm, on input 1n, outputs a random matrixA ∈ Zn×m
q .

KG: The key-generation algorithm, on inputA, chooses a random vectorx ∈ B(m,m/2) and computesy :=
Ax modq. It outputs (pk, sk) = (y, x).

P, V: The common inputs areA andy. The prover’s auxiliary input isx. They interact as follows:

Step P1: Choose a random permutationπ over [m] and a random vectorr ∈ Zm
q and send commitmentsc1,

c2, andc3 computed as

• c1 = Com(π,Ar ),
• c2 = Com(π(r )),

3 The Syndrome Decoding Problem is defined as follows: GivenA ∈ Zn×m
2 , y ∈ Zn

2, andw ∈ N, the problem is finding a vectorx ∈ B(m,w)
such thatAx ≡ y mod 2. We can consider this problem as a restricted version of SISq,m,β.
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• c3 = Com(π(x + r )).

Step V1 Send a random challengeCh ∈ {1,2,3} to P.

Step P2

• If Ch = 1, revealc2 andc3. So, sends = π(x) andt = π(r ).

• If Ch = 2, revealc1 andc3. Sendφ = π andu = x + r .

• If Ch = 3, revealc1 andc2. Sendψ = π andv = r .

Step V2

• If Ch = 1, check thatc2 = Com(t), c3 = Com(s+ t), ands ∈ B(m,m/2).

• If Ch = 2, check thatc1 = Com(φ,Au − y) andc3 = Com(φ(u)).

• If Ch = 3, check thatc1 = Com(ψ,Av) andc2 = Com(ψ(v)).

OutputDec= 1 if all checks are passed, otherwise outputDec= 0.

4.1 Statistical Zero-Knowledge Property

The proof of zero-knowledge property of the original protocol is in [34, Thm. 4]. Stern left completion of the proof
as the problem for reader. Thus, we give the whole proof that Stern’s protocol is statistically zero knowledge when
Com is a statistically-hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge whenCom is a statistically-hiding and
computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulatorS which on inputA andy and given oracle access to
a cheating verifierCV, outputs a simulated transcript. A real transcript betweenP andCV on inputA andy is
denoted by〈P,CV〉(A, y).

First, S chooses a random value ¯c from {1,2,3} which is a prediction what value the cheating verifierCV
will not choose. Next, it chooses a random tape ofCV, denoted byr ′. We remark that, by the assumption on
the commitment, the distributions of a challenge fromCV in the real interaction and that in the simulation are
statistically close.

Casec̄ = 1: S computesx′ ∈ Zm
q such thatAx′ = y by using linear algebra. Next, it chooses a random permutation

π′ over [m], a random vectorr ′ ∈ Zm
q , and random stringsρ′1, ρ′2, andρ′3. So, it computes

• c′1 := Com(π′,Ar ′; ρ′1),

• c′2 := Com(π′(r ′); ρ′2),

• c′3 := Com(π′(x′ + r ′); ρ′3).

It sends them toCV. Since the commitment scheme is statistically hiding, the distribution of a challenge from
CV is statistically close to the real distribution. Receiving a challengeCh from CV, the simulatorS computes a
transcript as follows:

• If Ch = 1,S outputs⊥ and halts.

• If Ch = 2, it outputs (r ′; (c′1, c
′
2, c
′
3),2, (π′, x′ + r ′, ρ′1, ρ

′
3)).

• If Ch = 3, it outputs (r ′; (c′1, c
′
2, c
′
3),3, (π′, r ′, ρ′1, ρ

′
2)).

We analyze the caseCh = 2. In this case, we obtain that

〈P,CV〉(A, y) = (r; (c1, c2, c3),2, (π, x + r , ρ1, ρ3),

S(A, y) = (r ′; (c′1, c
′
2, c
′
3),2, (π′, x′ + r ′, ρ′1, ρ

′
3)).

Assume that (π′, r ′, ρ′1, ρ
′
3) = (π, r + x − x′, ρ1, ρ3). By this equation, we have thatc′1 = c1, c′3 = c3, and the

responses from the simulator equal to the responses from the prover. Since the commitment is statistically hiding,
we have the distributions ofc2 andc′2 are statistically close. Thus, we conclude that the both distributions of the
simulated transcript and the real transcript are statistically close.
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It is straightforward to show it in the caseCh = 3 by using the equation (π′, r ′) = (π, r ). Thus, we omit this
part from the proof.

Casec̄ = 2: S chooses a random permutationπ′ over [m], two random vectorsr ′ ∈ Zm
q , x′ ∈ B(m,m/2), and

random stringsρ′1, ρ′2, andρ′3. S computes commitments

• c′1 := Com(π′,Ar ′; ρ′1),

• c′2 := Com(π′(r ′); ρ′2),

• c′3 := Com(π′(x′ + r ′); ρ′3).

It sends them toCV. Receiving a challengeCh, the simulator computes a transcript as follows:

• If Ch = 1, thenS outputs (r ′; (c′1, c
′
2, c
′
3),1, (π′(x′), π′(r ′), ρ′2, ρ

′
3)).

• If Ch = 2, then it outputs⊥ and halts.

• If Ch = 3, then it outputs (r ′; (c′1, c
′
2, c
′
3),3, (π′, r ′, ρ′1, ρ

′
2)).

We analyze the caseCh = 1. In this case, we have that

〈P,CV〉(A, y) = (r; (c1, c2, c3),1, (π(x), π(r ), ρ2, ρ3),

S(A, y) = (r ′; (c′1, c
′
2, c
′
3),1, (π′(x′), π′(r ′), ρ′2, ρ

′
3)).

Let χ be a permutation over [m] such thatχ(x′) = x. In this case, we set (π′, r ′, ρ′2, ρ
′
3) = (χ−1 ◦ π, χ(r ), ρ2, ρ3).

By this equation, we havec′2 = c2, c′3 = c3, and the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real transcript and the output
of the simulator are statistically close.

We omit the proof of the caseCh = 3, since it is trivial.

Casec̄ = 3: S chooses a random permutationπ over [m], two random vectorsr ∈ Zm
q , x′ ∈ B(m,m/2), and random

stringsρ1, ρ2, andρ3. S computes

• c1 := Com(π,A(x′ + r ) − y; ρ1),

• c2 := Com(π(r ); ρ2),

• c3 := Com(π(x′ + r ); ρ3).

It sends them toCV.

• If Ch = 1, thenS outputs (r ′; (c1, c2, c3),1, (π(x′), π(r ), ρ2, ρ3).

• If Ch = 2, then it outputs (r ′; (c1, c2, c3),2, (π, x′ + r ′)).

• If Ch = 3, it outputs⊥ and halts.

In the caseCh = 1, we consider the equation (π′, r ′, ρ′2, ρ
′
3) = (χ−1◦π, χ(r ), ρ2, ρ3). The remaining part of proof

is the same as that in the case ¯c = 2 andCh = 1. In the caseCh = 2, we let (π′, r ′, ρ′1, ρ
′
3) = (π, r + x − x′, ρ1, ρ3).

The remaining part of proof is the same as that in the case ¯c = 1 andCh = 2.
The probability that the simulatorS outputs⊥ is at most 1/3+ ε(n) ≤ 1/2 whereε is some negligible function.

Additionally, by the above arguments, the distribution of the output ofS conditioned on it is not⊥ is statistically
close to the distribution of the real transcript. Therefore, we have constructed the simulator and completed the
proof. �

Since the protocol is statistically zero knowledge fort = 1, it has a witness-indistinguishable property.
Witness-indistinguishable property is closed under the parallel composition [8]. Thus, the above protocol is wit-
ness indistinguishable fort = ω(logn) if a statistically-hiding string commitment scheme is used.
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4.2 Security of the Protocol

We show the theorem of the security on our ID protocol, which concerns impersonation under concurrent attack.

Theorem 4.2. For any m(n) = Θ(n logn), there existq(n) = O(n2.5 logn) and γ(n) = O(n
√

logn) such that
m ≥ 10n logq and qn/ |B(m,m/2)| is negligible inn and the above ID scheme is secure against impersonation
under concurrent attack ifGapSVP2γ is hard in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.3. For any fixedA, let Y := {y ∈ Zn
q | |{x ∈ B(m,m/2) | Ax = y}| = 1}, i.e., a set of vectorsy such that

the preimagex of y is uniquely determined forA. If qn/ |B(m,m/2)| is negligible inn, then the probability that, if
we obtain(y, x)← KG(A), theny ∈ Y is negligible inn.

We now proveTheorem 4.2.

Proof ofTheorem 4.2. Since there exists average-case/worst-case reduction from GapSVP2
γ to SIS2

q,m,
√

m
(Theo-

rem 3.3), we only constructA solving SIS2
q,m,
√

m
on the average from an impersonatorI = (CV,CP) which

succeeds impersonation under concurrent attack with non-negligible probabilityε.
For the clarity, we write the transcript of interaction by (Cmt,Ch,Rsp,Dec). Since the protocol is parallelized,

eachCmt, Ch, andRspis an ordered list which containst elements. For example,Cmt= (Cmt1, . . . ,Cmtt).
Given A, A chooses a random secret keyx ∈ B(m,m/2) and computesy = Ax. Using the secret key, it

can simulate the prover oracle perfectly.A runsCV on input (A, y) and obtains a state forCP. A feeds the
state toCP and acts as a legitimate verifier. Receiving commitmentsCmt, A chooses three challengesCh(1),
Ch(2), andCh(3) from {1,2,3}t uniformly at random. Rewinding with three challenges,A obtains three transcripts
(Cmt,Ch(i),Rsp(i),Dec(i)) for i = 1,2,3 as the results of the interactions.

By the Heavy Row Lemma [26], the probability that allDec(i) are 1 is at least (ε/2)3. Meanwhile, we have

Pr
[
∃ j ∈ [t] : {Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2,3}
]

= 1− (7/9)t

by a simple calculation. Thus the probability thatA has three transcripts (Cmt,Ch(i),Rsp(i),Dec(i)) for i = 1,2,3
such thatDec(i) = 1 for all i, and{Ch(1)

j ,Ch(2)
j ,Ch(3)

j } = {1,2,3} for somej ∈ [t] is at least (ε/2)3 − (7/9)t, which is
non-negligible sinceε is non-negligible andt = ω(logn).

We next show howA obtains a secret key or finds a collision of the hash functions in the string commitment
scheme by using three good transcripts. Assume thatA has three transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)) for i =

1,2,3 such thatCmt(1) = Cmt(2) = Cmt(3), Dec(i) = 1 for all i, and{Ch(1)
j ,Ch(2)

j ,Ch(3)
j } = {1,2,3} for some j ∈ [t].

Without loss of generality, we assume thatCh(i)
j = i. We parseRsp(i)j as in Step V2. We have following equations

(We omit j for simplification):

c1 = ComA(φ,Au − y; ρ(2)
1 ) = ComA(ψ,Av; ρ(3)

1 ),
c2 = ComA(t; ρ(1)

2 ) = ComA(ψ(v); ρ(3)
2 ),

c3 = ComA(s+ t; ρ(1)
3 ) = ComA(φ(u); ρ(2)

3 ),
s ∈ B(m,m/2).

If there exists a distinct pair of arguments of ComA ,A obtains a collision forA and solves SISq,m,√m.
Next, we suppose that there exist no distinct pairs of the arguments of ComA . Let π denote the inverse

permutation ofφ. From the first equation, we haveπ−1 = φ = ψ. Thus, we obtainu = π(s + t) from the
third equation. Combining it with the first equation, we haveAv = A(π(s) + π(t)) − y. Sincev = φ−1(t) = π(t)
from the second equation, we obtainy = A · π(s). Sinces ∈ B(m,m/2), soπ(s) also is in B(m,m/2). Therefore,A
setsx′ := π(s).

We now have to show thatx′ , x with probability at least 1/2. By Lemma 4.3, there must be another
secret keyx′ corresponding toy with overwhelming probability. Recall that the protocol is statistically witness
indistinguishable. Hence,I’s view is independent ofA’s choice ofx with overwhelming probability. Thus we
havex′ , x with probability at least 1/2. In this caseA outputsz = x − x′ and solves SISq,m,√m. �

We note that the above proof is extended into multi-user settings as in the proof of Lyubashevsky [17].
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5 An Ad Hoc Anonymous Identification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for our construction: Let
A be a system parameter. Each user has a secret keyxi ∈ B(m,w) and a public keyyi = Ax i . In the AID
scheme, a group is specified by a set of public keys (y1, . . . , yl) of the members. Letei,l denote anl-dimensional
vector t(0, . . . , 0,1,0, . . . , 0) whosei-th element is 1. The prover in the group, who has a secret keyxi , wants
convinces the verifier that he/she knows thatx′ := xi ◦ −ei,l such that [A y1 . . . yl ]x′ = 0 andxi ∈ B(m,m/2).
Changing the parameters and using Stern’s protocol, the prover can convinces the verifier that he/she hasx′ such
that [A y1 . . . yl ]x′ = 0, the numbers of+1 in x′ is m/2, and the numbers of−1 in x′ is 1. Additionally, we force
the prover to prove thatx′ is in the formx′ = xi ◦ −ei,l . To do so, we divide a permutationπ in Step P1 into two
permutations.

Let πh be a permutation over [m] andπt be a permutation over [l]. For a permutationπ over [m+ l], we denote
π = πh � πt if

π =

(
1 2 · · · m

πh(1) πh(2) · · · πh(m)

)
·
(

m+ 1 m+ 2 · · · m+ l
m+ πt(1) m+ πt(2) · · · m+ πt(l)

)
.

For anyπh and πt, we have (πh � πt)−1 = π−1
h � π−1

t . For anyxh ∈ Zm and xt ∈ Zl , if π = πh � πt then
π(xh ◦ xt) = πh(xh) ◦ πt(xt).

We here construct an AID scheme based on GapSVP. Similarly to the ID scheme inSection 4, the protocol is
repeatedt = ω(logn) times in parallel to achieve exponentially small soundness error. As in the previous section,
we hide randomness in ComA .

SetUp: Same asSetUp of the protocol inSection 4.
Reg: Same asKG of the protocol inSection 4.
P, V: The common inputs areA and (y1, . . . , yl). The prover’s auxiliary input isxi for somei ∈ [l]. Let A′ :=

[A y1 . . . yl ] and x := xi ◦ −ei.l . We write Com instead of ComA for ease of notation. They interact as
follows:

Step P1: Choose random permutationsπh over [m] andπt over [l]. Let π = πh�πt. Choose a random vector
r ∈ Zm+l

q . Send commitmentsc1, c2, andc3 as

• c1 = Com(πh, πt,A′r ),

• c2 = Com(π(r )),

• c3 = Com(π(x + r )).

Step V1 Send a random challengeCh ∈ {1,2,3} to P.

Step P2

• If Ch = 1, revealc2 andc3. Sends = π(x) andt = π(r ).

• If Ch = 2, revealc1 andc2. Sendφh = πh, φt = πt, andu = x + r .

• If Ch = 3, revealc1 andc3. Sendψh = πh, ψt = πt, andv = r .

Step V2

• If Ch = 1, check thatc2 = Com(t), c3 = Com(s+ t), ands is in the formsh ◦ −ej,l for some j and
sh ∈ B(m,m/2).

• If Ch = 2, check thatc1 = Com(φh, φt,A′u) andc3 = Com((φh � φt)(u)).

• If Ch = 3, check thatc1 = Com(ψh, ψt,A′) andc2 = Com((ψh � ψt)(v)).

OutputDec= 1 if all checks are passed, otherwise outputDec= 0.

The security of the above protocol is stated as follows. We omit the proof, since it is similar to the proof of
Theorem 4.2.

Theorem 5.1. Let m = m(n) and q = q(n) be polynomially bounded functions satisfying the conditions that
m ≥ 10n logq and qn/ |B(m,m/2)| is negligible inn. Assume that there exists an impersonatorI that succeeds
impersonation under concurrent chosen-group attack with non-negligible probability. Then there exists a proba-
bilistic polynomial-time algorithmA that solvesSIS2

q,m,
√

m
.

CombiningTheorem 5.1with Theorem 3.3, we obtain the following theorem.
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Theorem 5.2. For any m(n) = Θ(n logn), there existq(n) = O(n2.5 logn) and γ(n) = O(n
√

logn) such that
qn/ |B(m,m/2)| is negligible inn and the above scheme is secure against impersonation under concurrent chosen-
group attack ifGapSVP2γ is hard in the worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability of the protocol.
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A Formal Definitions

Provers and verifiers: An interactive algorithmA is a stateful algorithm that, on input an incoming message
Min and state informationSt, outputs an outgoing messageMout and updated stateSt′ (we will write (Mout,St′)←
A(Min,St)). We say thatA accepts ifSt= 1 and rejects ifSt= 0.

An interaction between a proverP and a verifierV ends whenV either accepts or rejects. We will write

(Tr,Dec)← Run[P(p1, . . . )
OP1,... ↔ V(v1, . . . )

OV1,...]

to indicate that we letP interact withV, having provided bothP andV with fresh random coins, to get a transcript
Tr and a boolean decisionDec.

A.1 Ad Hoc Anonymous Identification Schemes

An ad hoc anonymous identification (AID) scheme is four tupleAID = (SetUp,Reg,P,V), whereSetUp is the
setup algorithm which on input 1n outputsparam, Reg is the key generation and registration algorithm which on
inputparamoutputs (pk, sk), P is the prover algorithm taking inputsparam, a set of public keysR = (pk1, . . . , pkl),
and one of secret keyski such thatpki ∈ R, V is the verifier algorithm taking inputsparamandR. In [7], there are
the group public-key and the group secret-key construction algorithms in the original definition. We omit these
in the above definition. There are two goals for security of AID schemes: Security against impersonation and
anonymity.

Security against impersonation under concurrent chosen-group attack: In the setting of chosen-group at-
tack, the adversary could force the prover to prove the membership in an arbitrary group if the prover is indeed a
member of the group. Additionally, concurrent attack allows the cheating verifier to interact with the clones of any
provers. Also, they allow the cheating prover to interact with the clones of provers, but prohibit it from interacting
with the target provers.

We describe the formal definition of the security as follows. Consider the following experimentExpimp-cca
AID,I (n)

between the challenger and the impersonatorI = (CV,CP).

Experiment Expimp-cca
AID,I (n):
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Setup Phase:The challenger obtainsparam← SetUp(1n) and initializesHU,CU,TU,PS ← ∅, where
HU, CU, andTU denote the sets of honest users, corrupted users, and target users, respectively, and
PS denotes the set of prover’s session. The impersonatorCV is given the security parameter 1n and
the system parameterparam.

Learning Phase: The impersonatorCV can query to the three oraclesI, C, andP.

• The oracleI receives inputi. If i ∈ HU ∪ CU ∪ TU then returns⊥. Otherwise, it obtains
(pki , ski)← Reg(param; r i), addsi to HU, and providesI with pki .

• The oracleC receives inputi. If i < HU \ TU then returns⊥. Otherwise, it addsi to CU,
deletesi in HU, and returnsr i toI.

• The oracleP receives inputsR = (pki1, . . . , pki l ), i, s, andMin. If pki < Ror i < HU \ TU then
returns⊥. (The public keys inRneed not to be registered.) If (R, i, s) < PS then it adds (R, i, s) to
PS, picks a random coinρ, and sets a state of the proverStP[(R, i, s)] ← (param,R, ski , ρ). Next,
it obtains (Mout,StP[(R, i, s)]) ← P(Min,StP[(R, i, s)]). Finally, it returnsMout.

Challenge Phase:CV outputs a set of public keysRt = (pki1, . . . , pki l ) andStCP. If the indexes of the
keys{i1, . . . , i l} * HU then the challenger outputs 0 and halts. Otherwise, the challenger setsTU ←
{i1, . . . , i l} and givesStCP to CP. CP can query to the oraclesI, C, andP as in the learning
phase. Finally, the challenger obtains (Tr,Dec) ← Run[CP(StCP)I,C,P ↔ V(param,Rt)] and
outputsDec.

Definition A.1. LetAID = (SetUp,Reg,P,V) be an AID scheme andI = (CV,CP) an impersonator. Letn be
a security parameter. The advantage ofI in attackingAID is defined by

Adv imp-cca
AID,I (n) := Pr

[
Expimp-cca

AID,I (n) = 1
]
.

We say thatAID is secure against impersonation under concurrent chosen-group attack ifAdv imp-cca
AID,I (·) is negli-

gible for every polynomial-timeI.

We note that our definition is the concurrent version of the soundness definition in [7].

Anonymity against full key exposure: Anonymity against full key exposure for an AID schemeAID is de-
fined by using the following experimentExpanon-fke

AID,A (n) between a challenger and adversaryA:

Experiment Expanon-fke
AID,A (n):

Setup Phase:The challenger runs the algorithmSetUp with input 1n and obtainsparam. The adversaryA
is given the system parameterparam.

Challenge Phase:A requests a challenge by sending to the challenger the values ((pki0, ski0), (pki1, ski1),R).
Here the set of public keysR containspki0 and pki1, and (pki0, ski0) and (pki1, ski1) are valid key
pairs. The challenger chooses a random bitb ∈ {0,1} and runs the protocol as a prover who has
skib. (Tr,b∗)← Run[P(param,R, skib)↔ A]. If b = b∗ the challenger returns 1, otherwise returns 0.

Definition A.2. LetAID = (SetUp,Reg,P,V) be an AID scheme,A an adversary, andn a security parameter.
The advantage ofA in attackingAID is defined by

Advanon-fke
AID,A (n) :=

∣∣∣∣∣Pr
[
Expanon-fke

AID,A (n) = 1
]
− 1

2

∣∣∣∣∣ .

We say thatAID has anonymity with full key exposure ifAdvanon-fke
AID,A (·) is negligible for every polynomial-time

A.

B Proofs

B.1 Proof of Theorem 5.1

We will constructA solving SISq,m,
√

m with non-negligible probability by using an impersonatorIwhich succeeds
impersonation with non-negligible probability.
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The algorithmA, given inputA, feedsA to the impersonatorI. In the experiment, the impersonatorI will
call I, C, andP. If I calls I with input i, thenA choosesxi at random, computesyi := Ax i , and
returnsyi to I. A can simulate the oraclesC andP, sinceA has the secret keyxi corresponding to the
public keyyi .

At the end of the experiment,I will impersonate as a group which is specified by the set of the public keys
R = (y1, . . . , yl). RewindingI three times,A obtains three good transcripts as in the previous proof.

We next show howA obtains a secret key or finding a collision of the hash functions in the string commitment
scheme by using three good transcripts. Assume thatA has three transcripts (Cmt(i),Ch(i),Rsp(i),Dec(i)) for i =

1,2,3 such thatCmt(1) = Cmt(2) = Cmt(3), Dec(i) = 1 for all i, and{Ch(1)
j ,Ch(2)

j ,Ch(3)
j } = {1,2,3} for some j ∈ [t].

Without loss of generality, we assume thatCh(i)
j = i. We parseRsp(i)j as in Step V2. From the above argument, we

have four equations as follows (We omitj for simplification):

c1 = ComA(φh, φt,A′u; ρ(2)
1 ) = ComA(ψh, ψt,A′v; ρ(3)

1 ),
c2 = ComA(t; ρ(1)

2 ) = ComA((ψh � ψt)(v); ρ(3)
2 ),

c3 = ComA(s+ t; ρ(1)
3 ) = ComA((φh � φt)(u); ρ(2)

3 ),
s = sh ◦ −ek,l for somek andsh ∈ B(m,m/2).

If there exists a distinct pair of arguments of ComA ,A obtains a collision forA and solves SISq,m,√m.
Let us assume that there exist no distinct pairs. Letπ be an inverse permutation ofφh � φt. From the first

equation, we obtain the equationπ−1 = φh�φt = ψh�ψt. Combining with the third equation, we haveu = π(s+ t).
Thus, we haveA′v = A′(π(s) + π(t)). From the second equation,v = π(t). Hence, we obtainA′ · π(s) = 0. We
haveπ = πh � πt for some permutationsπh andπt over [m] and [l] respectively, sinceπ is inverse ofφh � φt. Thus,
we haveA′(πh(sh) ◦ πt(−ek.l)) = 0. That isyπt(k) = Aπh(sh). By using same argument in the previous proof, we
have thatπh(sh) , xπt(k) with probability at least 1/2. So,A outputsz = xπt(k) − πh(sh) as a solution for SISq,m,√m.

�

C Constructions from the Cyclic/Ideal Lattice Based Hash Functions

In this section, we construct the ID scheme and the AID scheme based on the cyclic/ideal lattice based hash
functions. We basically follow the notations of [18].

C.1 The Cyclic/Ideal Lattice Based Hash Functions

Several families of lattice-based hash functions are known to have small description sizes such as [21, 28, 18].
Originally, Micciancio [21] gave the compact version of the lattice-based hash functions and proved the one-
wayness of the version. After that, Peikert and Rosen [28] and Lyubashevsky and Micciancio [18] proposed the
modified versions of the version of Micciancio and showed their collision-resistance property, independently. We
employ the notions, the notations, the definitions, and the results in Lyubashevsky and Micciancio [18], since its
generality of the descriptions.

Let f ∈ Z[x] be a monic and irreducible polynomial of degreen. Consider the quotient ringZ[x]/〈 f 〉. We
use the standard set of representatives{(g mod f ) : g ∈ Z[x]}. In this section we identify a polynomiala(x) =

a0 + a1x + · · · + an−1xn−1 ∈ Z[x]/〈 f 〉 with ann-dimensional integer vectora = t(a0, . . . , an−1). We define a norm
with respect tof as follows: Forg ∈ Z[x], ‖g + 〈 f 〉‖ f = ‖(g mod f )‖∞. We write‖g‖ f instead of‖g + 〈 f 〉‖ f .

We note that any idealI ⊆ Z[x]/〈 f 〉 defines the correspondingn-dimensional integer latticeL(I ) ⊆ Zn. Notice
that a class of the lattices representable in this way is contained in a general class of all integer latticesL(B) ⊆ Zn. If
a given lattice in SVPp is restricted in a classΛ of lattices, we denote byΛ-SVPp the problem over such restricted
lattices inΛ. We also denote byΛ( f ) the set of lattices that are isomorphic to ideals ofZ[x]/〈 f 〉. See [18] for the
details. We here deal withΛ( f )-SVP∞γ , i.e., SVP with approximation factorγ in the`∞ norm whose input lattices
are restricted inΛ( f ).

Lyubashevsky and Micciancio constructed a family of collision-resistant hash functions based on the worst-
case hardness ofΛ( f )-SVP for suitablef .

We review whatf is suitable for the construction of Lyubashevsky and Micciancio. The property off is
defined as that the ring norm‖g‖ f is not much bigger than‖g‖∞ for any polynomialg. Formally, they captured this
property as theexpansion factorof f :

EF(f , k) = max
g∈Z[x],deg(g)≤k(deg(f )−1)

‖g‖ f / ‖g‖∞ .
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For example, a simple calculation shows that EF(xn ± 1, k) ≤ k and EF(xn−1 + xn−2 + · · · + 1, k) ≤ 2k. We say a
polynomial f is suitable if f is a monic and irreducible inZ[x] and there is a constantc such that EF(f , k) ≤ ck
for any natural numberk. The security of the hash functions is based on the worst-case hardness ofΛ( f )-SVP for
a suitable polynomialf . See [18] for more details. They employed a family of polynomials such asxn + 1 and
xn−1 + xn−2 + · · · + 1 for n such that the polynomials are irreducible inZ[x].

To describe the hash functions, we prepare some notations. Define Rotf : Zq[x]/〈 f 〉 → Zn×n
q as

Rotf (a) := [e0 ⊗ a,e1 ⊗ a, . . . , en−1 ⊗ a] ,

where eachei is a polynomialxi and the operator⊗ denotes the product operator inZq[x]/〈 f 〉. For example, if
f = xn−1 or f = xn+1, Rotf (a) is a circulant or skew-circulant matrix, respectively. We next defineROT( f ,q,m′)
as a subset ofZn×m′n

q (which is borrowed from [17]),

ROT( f ,q,m′) :=
{
A = [Rotf (a1) . . . Rotf (am′)] | a1, . . . , am′ ∈ Zn

q

}
.

We now describe a simple version of a family of hash functions given in [18].

HI( f ,q,m′) =
{
hA : {0,1}m′n→ Zn

q | A ∈ ROT( f ,q,m′)
}
,

wherehA(x) = Ax. We note that, forA = [Rotf (a1) . . . Rotf (am′)] andx = x1 ◦ . . . ◦ xm′ , we can interpretAx as∑m′
i=1 ai ⊗ xi .

Lyubashevsky and Micciancio showed the following theorem in [18].

Theorem C.1. Let E = EF(f ,3). Let m′ > logq/ log 2 andq > 2Em′n3/2 logn. Then forγ = 8E2m′n log2 n, if
Λ( f )-SVP∞γ is hard in the worst case thenHI( f ,q,m′) is collision resistant.

Now, the setup algorithm on input 1n outputsA = [Rotf (a1) . . . Rotf (am′ )] from ROT( f ,q,m′) uniformly at
random. The key-generation algorithm on inputA, chooses a random vectorx ∈ B(m′n,m′n/2) uniformly at
random, computes a vectory := Ax, and outputs (pk, sk) = (y, x).

C.2 An String Commitment Scheme

UsingHI( f ,q,m′), we also obtain a simple string commitment scheme. We apply the following lemma to
HI( f ,q,m′) and obtain the statistically-hiding property of a string commitment scheme. This lemma is obtained
by Micciancio’s regularity lemma [21]

Lemma C.2. Let q be a primeq = q(n) = nO(1) andm′ an integer such thatm′ = m′(n) > 2 logq. Let f ∈ Zq[x]
of degreen be a suitable polynomial. The statistical distance between(a1, . . . , am′ ,

∑m′
i=1 ai ⊗ xi) and the uniform

distribution over the set(Zq[x]/〈 f 〉)m′+1 is negligible inn, where eachai andxi is a random variable overZq[x]/〈 f 〉
and{0,1}n, respectively.

Now, we obtain the following lemma as inLemma 3.4.

Lemma C.3. For any m′(n) = Θ(logn), there existsq(n) = Θ(m′n3/2 logn) and γ = Θ(m′n log2 n), such that,
m′(n) > 4 logq and for a suitable polynomialf , ComA is a statistically-hiding and computationally-binding
string commitment scheme in the trusted setup model ifΛ( f )-SVP∞γ is hard in the worst case.

Using the Merkle-Damgård technique, we obtain the string commitment scheme whose commitment function is
ComA : {0,1}∗ × {0,1}m′n/2→ Zn

q rather than ComA : {0,1}m′n/2 × {0,1}m′n/2→ Zn
q.

C.3 An Identification Scheme and An Ad Hoc Identification Scheme

We obtain the ID scheme S+
C/IL and the AID scheme by combining the above setup and key-generation algorithms

and the string commitment scheme with Stern’s scheme as in Section4 and5. One can prove the securities of the
schemes in the same manner to the proof of Theorems4.2and5.1.

Theorem C.4. Let f be a suitable polynomial andE := EF(f ,3). Let m′ = m′(n) andq = q(n) be polynomially
bounded functions such thatm′ > 4 logq, q > 2Em′n3/2 logn, andqn/ |B(m′n,m′n/2)| is negligible inn. Then for
γ = 8E2m′n log2 n, if Λ( f )-SVP∞γ is hard in the worst case then the ID schemeS+

C/IL which uses the above setup
and key-generation algorithms and the above string commitment scheme is secure against impersonation under
concurrent attack.
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sketch.We show that if there exists an impersonatorI which succeeds impersonation under concurrent attack
with non-negligible probabilityε, there existsA that finds a collision (z1, z2) forHI( f ,q,m′).

GivenA ∈ ROT( f ,q,m′), A chooses a random secret keyx ∈ B(m′n,m′n/2) and computey := Ax. A runs
I on inputs (A, y). We note thatA can simulate the oraclesC andP, sinceA has the secret keyx. A runs
I three times with random challenges and a fixed random tape. Then,A obtains three transcripts (Cmt(i),Ch(i),
Rsp(i),Dec(i)) for i = 1,2,3 as the results of the interactions betweenI andA. Note thatCmt(1) = Cmt(2) = Cmt(3)

sinceA fixes the random tape to workI. By the assumption, with non-negligible probability,A obtains good
transcripts such thatDec(i) = (Dec(i)

1 , . . . ,Dec(i)
n ) are all 1 for everyi. Then,A can findx′ from (A, y) or find

(s, ρ) , (s′, ρ′) such that ComA(s; ρ) = ComA(s′; ρ′) by using the fact thatCmt(1) = Cmt(2) = Cmt(3). In the former
case, we can show thatx′ , x with probability at least 1/2 as in the proof ofTheorem 4.2. A outputs (x, x′).
Sincex, x′ ∈ B(m′n,m′n/2) ⊆ {0,1}m′n,A indeed finds a collision forHI( f ,q,m′). In the latter case,A computes
z , z′ ∈ {0,1}m′n from (s, ρ) and (s′, ρ′) such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′. Thus,A outputs
(z, z′) as a collision forHI( f ,q,m′). �

Theorem C.5. Let f be a suitable polynomial andE := EF(f ,3). Let m′ = m′(n) andq = q(n) be polynomially
bounded functions such thatm′ > 4 logq, q > 2Em′n3/2 logn, andqn/ |B(m′n,m′n/2)| is negligible inn. Then
for γ = 8E2m′n log2 n, if Λ( f )-SVP∞γ is hard in the worst case then the AID scheme which uses the above setup
and key-generation algorithms and the above string commitment scheme is secure against impersonation under
concurrent attack.

sketch.We show that if there exists an impersonatorI which succeeds impersonation under concurrent chosen-
group attack with non-negligible probability, there existsA that finds a collision (z1, z2) forHI( f ,q,m′).

The algorithmA, given inputA ∈ ROT( f ,q,m′), feedsA to the impersonatorI. In the experiment, the
impersonatorI will call I, C, andP. If I calls I with input i, thenA choosesxi ∈ B(m′n,m′n/2) at
random, computesyi := Ax i , and returnsyi to I. A can correctly simulate the oraclesC andP, sinceA
has the secret keyxi corresponding to the public keyyi .

At the end of the experiment,I will impersonate as a group which is specified by the set of public keys
R = (y1, . . . , yl). RewindingI three times,A obtains (s, ρ) , (s′, ρ′) such that ComA(s; ρ) = ComA(s′; ρ′) or a
vectort = th ◦ tt such that [A y1 . . . yl ]t = 0, whereth ∈ {0,1}m′n, tt = −ek,l for somek, andth ∈ B(m′n,m′n/2) as
in the proofs ofTheorem 4.2andTheorem 5.1(seeAppendix B).

In the former case,A computesz , z′ ∈ {0,1}m′n such that ComA(s; ρ) = Az and ComA(s′; ρ′) = Az′. Hence,
A outputs (z, z′) as a collision forHI( f ,q,m′).

In the latter case, we haveAth = yk. By the same argument as in the proof ofTheorem 5.1, we have that
th , xk with probability at least 1/2. Hence,A outputs (xk, th) as a collision forHI( f ,q,m′). �
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