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Chapter 1

Introduction

1.1 Background

Lattice Problems and Cryptography. The lattice-based cryptosystems have been well-studied
since Ajtai's seminal result4jt96a] on a one-way function based on the worst-case hard-
ness of lattice problems, which initiated the cryptographic use of lattice problems. Ajtai and
Dwork first succeeded to construct public-key cryptosysteAi39[7] based on the unique
shortest vector problem (USVP). After their results, a number of lattice-based cryptosystems
have been proposed in the last decade by using cryptographic advantages of lattice prob-
lems [GGH97h CC99 HPS9§ Reg04 Ajt05, Reg03.

We can roughly classify the lattice-based cryptosystems into two types: (A) those who
are dficient on the size of their keys and ciphertexts and the speed of encrgetioyption
procedures, but have no security proofs based on the hardness of well-known lattice problems,
and (B) those who have security proofs based on the lattice problems butfa@ene

For example, the GGH cryptosysterGHO7H, NTRU [HPS9§ and their improve-
ments Mic01, PJHO3 Ngu02 HGNP*03] belong to the type A. These ardieient multi-bit
cryptosystems related to lattices, however it is unknown whether their security is based on the
hardness of well-known lattice problems. Actually, a few papers reported security issues of
cryptosystems in this typéNgu99 Gen0].

On the other hand, those in the type B have security proofs based on well-known lattice
problems such as uSVP, the shortest vector problem (SVP) and the shortest linearly independent
vectors problem (SIVP)AD97, Reg04 Reg09. (SeeSection 2.2for their definitions and
computational complexity.) In particular, the security of these cryptosystems can be guaranteed
by the worst-case hardness of the lattice problems, i.e., breaking the cryptosystems on average
is at least as hard as solving the lattice problems in the worst case. This attractive property of



the average-caggorst-case connection has been also studied from a theoretical point of view
and obtained the families of one-way functions or collision-resistant hash funcig§4,
GGH96 CN97, MR04, Mic04b, LM05, PRO4.

Aside from the interesting property, such cryptosystems generally have longer keys and ci-
phertexts than those of the cryptosystems in the type A. To set their size practically reasonable,
their security parameters must be small, which possibly makes the cryptosystems insecure in a
practical senseNS99. Therefore, it is important to improve theiffieiency for secure lattice-
based cryptosystems in the type B.

In recent years, several researchers actually considered fficierg lattice-based crypto-
systems with security proofs. For example, Regev constructectiarert lattice-based cryp-
tosystem with shorter key®Rpg03. The security is based on the worst-case quantum hardness
of certain approximation versions of SVP and SIVP, that is, his cryptosystem is secure if we
have no polynomial-time quantum algorithm that solves the lattice problems in the worst case.
Ajtai also constructed artlgcient lattice-based cryptosystem with shorter keys by using a com-
pact representation of special instances of uSBp], whose security is based on a certain
Diophantine approximation problem.

Other Applications. In addition to public-key cryptosystems and families of one-way func-
tions or collision-resistant hash functions, there are many cryptographic primitives, such as
digital signature, bit commitment, proof of knowledge, zero knowledge, and etc. There are a
few works on each primitive based on lattice problems.

On digital signature, there exist lattice-based signature schemes, the GGH signature
scheme GGH97H, NSS HPS0], and NTRUS~ [HHGP'03]. One year later from
NSS HPSO0] appearing, it was analyzed by two repor@&JSS01GS04. In 2003, Szydlo
proposed an attack on the GGH signature scheme and NIGR2S1 without perturba-
tion [Szy03. Recently, Nguyen and Regev proposed a practical attack on the GGH signature
scheme and NTRU&N-251 without perturbation using learning algorithmR0€. On string
commitment (rather than bit commitment), it is already known that the family of collision-
resistant hash functions implies a statistically-hiding computationally-binding string commit-
ment schemeH4M96, DPP97 DPP9§.

There are also a few works on zero knowledge and proof of knowledge. Gold-
reich and Goldwasser showed coGap%}/\l?— € AM and proposed a statistical zero-

n/logn)
k.nowlledge proof for .coGapCVA(D W‘) énd coGapSV& NIE [GGOQ. In 2003, Mic-
ciancio and Vadhan introduced a statistical zero-knowledge proof for Ga&%) and
GapSV%(m) [MVO03]. Recently, Goldwasser and Kharchenko published a proof of plain-

text knowledge for the Ajtai-Dwork cryptosyster@K05)].
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1.2 Motivation

First, we remark progress of quantum computation. Using Shor’s algori#iimad], most
number-theoretical cryptosystems are insecure against quantum adversary. Here, we must study
cryptosystems that are secure against quantum adversary. Many researchers consider that com-
binational problems are hard even in quantum computation, and pay attention to lattice-based
cryptosystems. Recently, International Workshop on Post-Quantum Cryptography (PQCrypto
2006) [Eur0g was held, which covered lattice-based cryptosystems, multivariate cryptosys-
tems, and quantum algorithms.

Next, we revisit eiciency of public-key encryption schemes. Indie a security parameter.
In most number-theoretical public-key encryption schemes, such as RSA, EIGamal, Cramer-
Shoup, etc., the size of public-key@n), the size of plaintext i©(n), the size of ciphertext is
O(n), and the time of encryption ®(n%). In a few number-theoretical public-key encryption
schemes, such as Goldwasser-Micali, the size of public-k€)($, the size of plaintext is
1, the size of ciphertext i©(n), and the time of encryption i©(n?). SeeTable 1.1for the
efficiency of cryptosystems.

Number-Theoretical (1) Number-Theoretical (2)

cryptosystem RSA [RSA7§ | ElGamal EIG85 Goldwasser-MicaliGM84]
security Unknown DDH Factoring of RSA modules
size of public key O(n) O(n) O(n)
size of private key O(n) O(n) O(n)
size of plaintext Oo(n) Oo(n) 1
size of ciphertext O(n) O(n) O(n)
time of encryption o(nd) o(nd) o(r)

Lattice-Based (A) Lattice-Based (B)

cryptosystem | GGH [GGHI97H | NTRU [HPS9§ | ADGGH [GGH974 | R05 [Reg03
security Unknown Unknown o(n*H-usvpP SVPg(ms)
size of public key O(n?logn) O(nlogn) O(n°logn) O(n?log? n)
size of private key O(n?logn) O(nlogn) O(nlogn) O(nlogn)
size of plaintext O(n) O(n) 1 1
size of ciphertext O(nlogn) O(nlogn) O(n? logn) O(nlogn)
time of encryption|  O(n?logn) O(nlogn) O(n?logn) O(n?logn)

Table 1.1: summary.

Consequently, in number-theoretical cryptosystems, the sizes is small but the speed is slow.
On the other hand, in lattice-based cryptosystems, the size is big but the speed is fast. We
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expect increasing storage capacity will allow us to use lattice-based cryptosystems practically.
However, the size of plaintext of the lattice-based cryptosystems in type B is only 1 bit and
impede practical use of cryptosystems in type B. Therefore, increasing the size of plaintext in
type B is one of important issues.

Applications of lattice-based cryptosystems are also important issues. There exist many
applications, such that signature, identification, proof of knowledge, and etc, based on number-
theoretic public-key cryptosystems. As seefsattion 1.]1there exist a few applications based
on lattice-based cryptosystems. Construction of applications needs research of properties of
cryptosystems and primitive tools, such as zero knowledge and proof of knowledge. Thus,
we have to study zero knowledge and proof of knowledge for lattice-based cryptosystems and
properties of lattice-based cryptosystems.

1.3 Our Contribution

In this thesis we study applications of lattice-based cryptosystems which belong to the type B.
For simplicity, we call the cryptosystems proposed (BGH97a Reg04 Reg05 Ajt05]
ADGGH, R04, R0O5, and A05, respectively.

1: Multi-bit Public-Key Cryptosystems Based on Lattice Problems and Their Pseudoho-
momorphism. The firstis dficient lattice-based cryptosystems with security proofs based on
well-known lattice problems or other secure cryptosystems. Specifically, we propose a univer-
sal technique which admits four lattice-based cryptosystems, ADGGH, R04, R05, and AQ5,
to encrypt a multi-bit plaintext without changing the size of the ciphertext. Furthermore, we
study their pseudohomomorphisms, the property of the sum of ciphertexts. For more detalils,
seeChapter 3

2: A Modified Regev’05 Cryptosystem, Proofs of Knowledge on Its Secret Key, and Signa-

ture Schemes. Secondly, we propose a modified RO5 and a proof of knowledge on its secret
key. Although there already exist public-key identification schemes based on lattice problems,
itis not known that its public key can be used as a public key of an encryption scheme. We need
modify the original RO5 to obtain a public-key identification scheme. We also propose concrete
lattice-based signature scheme, obtaining by using the Fiat-Shamir transforrk&®eh [The
security in the random oracle model follows theoremdA896 O098 AABNO02]. SeeChap-

ter 4for more details.



3: Proofs of Plaintext Knowledge for the Regev’'04 and Regev’05 Cryptosystems At last,

we propose proofs of plaintext knowledge for R04 and R0O5 which are based on the proof of
plaintext knowledge for the Ajtai-Dwork cryptosystem @KO05]. In the construction, we use

the result of (1), trade®s and pseudohomomorphisms. We also remark that Goldwasser and
Kharchenko’s technique can not apply to the original RO4 and R05. Applying it to the original
cryptosystems will need new techniques. Séapter For details.

1.4 Organization

The rest of this thesis is organized as follows: We first recall basic notions and notations, and
briefly review tools inChapter 2 Chapter 3describes the multi-bit versions of four lattice-
based cryptosystems and their pseudohomomorphism property. We show the modification of
the Regev'05 cryptosystem, the proof of knowledge on its secret key, and the lattice-based
signature scheme iGhapter 4 We discuss the proof of plaintext knowledge of the Regev'04
and RegeVv’05 cryptosystems@hapter 5



Chapter 2
Preliminaries

In this chapter, we denotes notions, notations and definitions. The organization of this chapter is
follows: Section 2.1denotes fundamental notions and notations. We review the definition and
notions of lattices, and list up lattice problems and their complexiti€gition 2.2 Section 2.3
describes Gaussian and other distributions which we use in this thesis. We review the definition
and notions of codes iBection 2.4 Finally, we recall the definition of zero knowledge and
proof of knowledge irSection 2.5

2.1 Fundamental Notions and Notations

We define a negligible amount mas an amount that is asymptotically smaller thaffor any
constantt > 0. More formally, f(n) is a negligible function im if lim,_,.n°f(n) = O for any
c > 0. Similarly, a non-negligible amount is one which is at lgasStfor somec > 0.

For m-bit stringr € {0, 1}™, r; denotes-th bit of r (i.e.,r =ry...ry,). We defind , as then
by n identity matrix. We also defing; € R" as anmn-dimensional vector whoseth coordinate
is 1 and other coordinates are all 0. The length of a vecter'(x,, ..., X,) € R", denoted by
IXIl, is (L, X2)Y/2. For any fieldK, the inner product of two vectoss= (x, . .., X,) € K" and
Yy = '(Y,...,¥n) € K", denoted by(x,y), is Y7, xyi. Letwy(x) denote the Hamming weight
of x, i.e., the number of nonzero elementsxinFor any vectox € R" and a seS C R" we
define Distk, S) = infycs |ly — X||. Let By(c, r) denote am-dimensional hyperball whose center
isce R"and radius is > 0, thatis{x e R" | |[x —¢|| < r}.

Let| x] be the closest integer toc R (if there are two such integers, we choose the smaller.)
and frc(x) = [x— |x]| for x € R, i.e., frc(X) is the distance fronx to the closest integer. We
definex mody asx — | x/y]y for x,y € R. For an elemenx € Z, we defineix|, as the integer
xif x€{0,1,...,[p/2]} and as the integey — x otherwise. In other wordsx|, represents the



distance ofx from 0 inZj.

We call probabilityp exponentially close to 1 ip = 1 — 2%, We represent a real num-
ber by rounding its fractional part. If the fractional partxfe R is represented im bits,
the rounded numbex has the precision of /2™, i.e., we havgx — x| < 1/2™. The security
parameten of lattice-based cryptosystems is equal to dimension of a lattice in the lattice prob-
lems on which security of the cryptosystems are based. We say that an algorithm distinguishes
between two distributions if the gap between the acceptance probability for their samples is
non-negligible.

2.2 Lattice Problems

An n-dimensional lattice irR" is the setL(by,...,b,) = {ZL; aib;i : @ € Z} of all integral
combinations oh linearly independent vectots, ..., b,. The sequence of vectobs, ..., b,
is called abasisof the latticeL. For clarity of notations, we represent a basis by the matrix
B = (by,...,by) € R™". For any basi$, we define thdundamental parallelepipeg(B) =
{>L,aibi : 0 < a; < 1}. The vectorx € R" reduced modulo the parallelepipggB), denoted
by x mod#(B), is the unique vectoy € £(B) such thaty — x € L(B). The dual latticd_* of
a latticeL isthe setL* = {x e R": (x,y) e Zforally € L}. If L is generated by basB, then
(‘B)!is a basis for the dual lattice, wheéiis the transpose d@. For more details on lattices,
see the textbook by Micciancio and Goldwas3éG02].

We list up well-known hard problems used for lattice-based cryptosystems. Recall that the
length of vectors is defined by tlenorm in this thesis.

The shortest vector problem (SVP) and its approximation version (Bvdve been deeply
studied in the computer science.

Definition 2.2.1(SVP). Given a basi® of a latticeL, find a non-zero vector € L such that
for any non-zero vectox € L, ||v|| < [IX]|.

Definition 2.2.2(SVP,). Given a basi® of a latticeL, find a non-zero vector € L such that
for any non-zero vectox € L, ||v|| < y|IXI|.

The NP-hardness of SVP was shown by Aji&jtP8] under a randomized reduction in 1998.
Recently, Khot Kho04 proved that SVP is NP-hard under the assumption NP RP for
any constant. He also proved that SVRn2+ is NP-hard within under the assumption
NP ¢ RTIME(2roly(ogn),

Even within a polynomial approximation factor, it is unknown whether there exists a
polynomial-time algorithm for the approximation version of SVP. The most well-known solu-



tion to this approximation problem is the so-called LLL algorithm proposedih$2]. This
algorithm can solve SV in polynomial time.

On the other hand, there are several non-NP-hardness results on the approximation version
of SVP with a polynomial approximation factor. Goldreich and Goldwass&((J showed
SVPQ(W) is in NP N coAM. Aharonov and RegevARO5] showed that SVER ) is in
NP N coNP.

The unigue shortest vector problem (uSVP) is also well known as a hard lattice problem
applicable to cryptographic constructions. We say the shortest weotarlatticeL is f-unique
if for any non-zero vectox € L which is not parallel tav, f||v|| < ||x]|. The definition of uSVP
is given as follows.

Definition 2.2.3(f-uSVP) Given a basi® of a latticeL whose shortest vector is-unique,
find a non-zero vector € L such that for any non-zero vectore L which is not parallel to,
fIvIE < [IXII.

Similarly to the case of SVP, the exact version of uSVP is shown to be in NP-hard by Kumar
and Sivakumar{S01]. Cai [Cai9g showed thaf2(n'/4)-uSVP is in NP\COAM. SeeFigure 2.1
for the hardness of SVP and uSVP.

In the computational complexity theory on lattice problems, the shortest linearly indepen-
dent vectors problem (SIVP) and its approximation version Slafe also considered as a hard
lattice problem.

Definition 2.2.4(SIVP). Given a basi8 of a latticeL, find a sequence aflinearly independent
vectorsvy, ...,V € L such that for any sequencemfinearly independent vectors, ..., X, €

L, maX-y, _nllVill £ maX=y, nlIXill.

.....

Definition 2.2.5 (SIVP,). Given a basid of a latticeL, find a sequence af linearly inde-
pendent vectors;,...,v, € L such that for any sequence wflinearly independent vectors

..........

The closest vector problem (CVP) is also an important problem.

Definition 2.2.6(CVP). Given a basi® of a latticeL and a target vectay, find a closest vector
v € L such that for any vectore L, |ly — V|| < |ly — X]|.

Definition 2.2.7 (CVP,). Given a basid of a latticeL and a target vectoy, find a closest
vectorv € L such that for any vectote L, |ly — V|| < y|ly — X||.

We often consider its decisional promise problem.



Definition 2.2.8 (GapCVP). For y > 1, instances of the promise closest vector problem
GapCVPE are tuplesB, y, t) whereB is a basis of a lattice in R", t > 0, and a vectoy € R".
(B,y.t) is a YES instance of the GapCYH there exists a lattice vector € L such that

IX =yl <t (B,y,t) is a NO instance of the GapCYH there exists no lattice vector € L
such that|x — y|| > yt.

Although the Diophantine Approximation (DA) was originally a number-theoretic problem,
DA is deeply related to the lattice theory. (See, e@L$89.) The problem DA is defined as
follows.

Definition 2.2.9 (DA). Givenn real numbers,,...,r, and an integeM, find an integem e
[1, M"] such that ma¥k, frc (mr;) < 1/M.

From a complexity-theoretical point of view, Lagariasf83 showed that decisional ver-
sion of DA is NP-complete. TrolinTro01] also showed a reduction from the decisional version
of DA to a certain lattice problem. In the context of cryptography, Ajtai defined a variant of
DA and constructed anfiecient lattice-based cryptosystem based on the hardness of this vari-
ant [Ajt05]. We refer to this variant as DAdefined as follows.

Definition 2.2.10(DA’, [Ajt05]). Letcy, c; > 0 be constants. Assume thaf...,r, are sam-
ples from the uniform distribution on (@) with the condition that there exists an integer
such that

1<m<n®and fre(mr) < n @ fori=1,...,n.

Givenn, rq,...,rn, C1, Cp, find such an integan.

exact C \/n/logn \/n 2n/?
SVP | % % % %
NP-hardNP N coAM NP N coNP P
exact nt/4
USVP | %
NP N coAM

Figure 2.1:the complexity of SVP and uSVP.



2.3 Gaussian and Other Distributions

The normal distribution with mean 0 and variancé is the distribution orR given by the

V2r o
#™ obtained as follows: (1) take samplesx, ..., X, from ¢ independently and (2) output

{(Xq,..., %,). For an-dimensional vectok and anys > 0, letp(x) = expx|Ix/s?) be a

density function% exp(—%(l)z). For any distributiong, we consider the distribution

Gaussian function scaled by a factorofAlso, v" := pf/s is ann-dimensional probability

density function. Forr € R* the distribution¥, is the distribution on [01) obtained by sam-
pling from a normal variable with mean 0 and varianég(2r) and reducing the result modulo

’ Y, (r) = Z g exp(—n(%)z).

kez
This distribution is obtained by “folding” a Gaussian distributis(0, o?/(2r)) on R into the
interval [0, 1). Based on this distribution, the Regev’'04 cryptosystem makes use of a periodic
distribution ®,, defined by the density functio®,,(r) := ¥,(rh mod 1). We can sample
values according to this distribution by using samples flBmas shown inlReg04: (1) We
samplex € {0,1,...,h]} uniformly at random and then (2) samplexccording ta¥,. (3) If

0 < (x+Yy)/h < 1, we then take the value as a sample. Otherwise, we repeat. For an arbitrary
probability distribution with density functios : T — R* and some integeg > 0, we define its
discretizationp : Zq — R* as the discrete probability distribution obtained by sampling from

¢, multiplying by g, and rounding to the closest integer modgldore formally,

. (i+1/2)q
#0) = f o(x)dx

(i-1/2)q
Given two probability density functions;, ¢, on R", we define the statistical distance be-
tween them ad(¢q, ¢») = %fRn lp1(X) — ¢2(X)| dx. A similar definition holds for discrete ran-
dom variables. We sometimes abuse such notation, and use the same notation for two arbitrary
functions. Note that the acceptance probability of any algorithm on inputsXrdiffers from
its acceptance probability on inputs frofrby at mostA(X, Y).
We use the following lemma irjeg04 to bound the tail of Gaussian distribution.

Lemma 2.3.1([Reg04). The probability that the distance of a normal variable with vari-
ance o2 from its mean is more than t is at mos{2/n(c/t) exp((t/o)?/2). That is,

Prnmoa[IX — Ml > t] < V2/x(o/t) exp(t/o)?/2),

We say that an algorithid with oracle access is a distinguisher between two distributions
if its acceptance probability when the oracle outputs samples of the first distribution and when
the oracle outputs samples of the second distributiffierdby a non-negligible amount.
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2.4 Codes

Let F, denote a field withg elements, wherg is a prime power. Ag-ary linear codeC is a
linear subspace @f;. If C has dimensiok thenC is called anif, k] code. A generator matrix
G for a linear codeC is an by k matrix for which the columns are a basis©f Note that
C:={Gm|me IF'(;}. We say that is in standard form i = ('Fﬁ). For an p, k] codeC, we
define the dual codé* by C+ := {y e Fj | foranyx € C,(x,y) =0}. If G = (
-tp
-

In

| .
Pk) is a generator

matrix in standard form of the cod& thenH = ( ) is a generator matrix of the co@2. This
follows from the fact thatH has the right size and rank and thdG = 0, which implies every
codewordGm has inner product 0 with every column f In other wordsx € C if and only
if '"Hx = 0. Thus, we calH a parity-check matrix. We note that, given any generator matrix
G of the codeC, we can #iciently computeC’s generator matrixz’ in standard form an@’s
parity-check matrix. If C is a linear code with a parity-check mattikthen for everyx € Fg
we call'Hx the syndrome ok.

It is well known that the question of finding the nearest codeword to a vector (Nearest Code-
word Problem, NCP) is NP-hard even in approximation versi&®g97). It is also dfficult to

find a word of a given weight from its syndrom@NIvT78].

Definition 2.4.1(Symdrome Decoding Problem, SDR3iven a parity-check matril € Z2*™,
a binary nonzero vector € Z7', and a positive integew, find a binary vectox € Z3 with no
more tharw 1's such thatHx = y.

2.5 Zero Knowledge and Proof of Knowledge

In this section, we recall the definitions and notations of zero knowledge and proof of knowl-
edge.

Definition 2.5.1 (Auxiliary-Input Zero Knowledge) An interactive proof systemRV) for
a languaged. is (perfectstatisticalcomputational)auxiliary-input zero knowledgé for ev-
ery probabilistic polynomial-time machir* and polynomialp(-), there exists a probabilis-
tic polynomial-time machiné& such that the ensembl¢&d, V*(2))(x)} and{S(x, 2)} are (per-
fectly/statisticallycomputationally) indistinguishable on the $€¢ 2) : x € L, |2 = p(|x|)}.

For a relationR C {0, 1}* x {0,1}" andx € {0, 1}*, we define a set of withesx) := {y :
(xy) € R}
Definition 2.5.2 (Proof of Knowlegde) Let € (0,1). An interactive protocolR, V) with a

proverP and a verifiel is aproof of knowledge system with knowledge erdor a relation
Rif the following holds:

11



Completeness:For every common inpuk for which there existy such that X,y) € R the
verifierV always accepts interacting with the prower

Validity with error n: There exists a polynomial-time interacting oracle Turing macline
and a constant > 0 such that for everx € {0, 1}* such thatR(x) # @ and for every
prover P* the following holds:K (x) € R(X) U {1} and PrK” (x) € R(X)] > (p — ),
wherep > « is the probability thaV accepts while interacting witR* on common input
X.

12



Chapter 3

Multi-bit Public-Key Cryptosystems
Based on Lattice Problems and Their
Pseudohomomorphism

3.1 Introduction

As seen inChapter 1 the dficiency of lattice-based cryptosystems is an important problem.
We continue to studyf@cient lattice-based cryptosystems with security proofs based on well-
known lattice problems or other secure cryptosystems. In particular, we focus on the size of
plaintexts encrypted by the cryptosystems in the type B. To the best of the authors’ knowledge,
all those in this type are single-bit cryptosystems. We therefore obtain ritrert lattice-

based cryptosystems with security proofs if we succeed to construct their multi-bit versions
without increase in the size of ciphertexts.

In this chapter, we consider multi-bit versions of the improved Ajtai-Dwork cryptosystem
proposed by Goldreich, Goldwasser, and Hal&é5H973, the Regev cryptosystems given
in [Reg04 and in [Reg03, and the Ajtai cryptosystenAjt05]. We develop a universal tech-
nique derived from a general structure behind them for constructing their multi-bit versions
without increase in the size of ciphertexts.

Our technique requires precise evaluation of traffe{metween decryption errors and hard-
ness of underlying lattice problems in the original lattice-based cryptosystems. We firstly give
precise evaluation for the trad€f® to apply our technique to constructions of the multi-bit
versions. This precise evaluation also clarifies a quantitative relationship between the security
levels and the decryption errors in the lattice-based cryptosystems, which may be useful to
improve the cryptosystems beyond our results.
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Ajtai-Dwork Regev'04
cryptosystem ADGGH [GGH974d | mbADGGH R04 [Reg04 mbRO04
security O(n')-usSvP O(n**¢)-uSVP | O(n*%)-uSVP | O(n15+¢)-usvpP
size of public key O(n®logn) O(n®logn) o(n®) o(n®)
size of private key o(n?) o(r) o(n) o(r)
size of plaintext 1 O(logn) 1 O(logn)
size of ciphertext O(n?logn) O(n?logn) o(r?) o(r?)
rounding precision 2" 2" 2-8n* 2-8n*
Regev'05 Ajtai
cryptosystem RO5 [Reg0j mbRO0O5 A05 [Ajt05] mbAQ5
security SVPs s SVPs(ns+) DA’ A05
size of public key O(n?log? n) O(n?log? n) O(n?logn) O(n?logn)
size of private key O(nlogn) O(nlogn) O(nlogn) O(nlogn)
size of plaintext 1 O(logn) 1 O(logn)
size of ciphertext O(nlogn) O(nlogn) O(nlogn) O(nlogn)
rounding precision 2" 2" 1/n 1/n

Table 3.1: summary. £ is any positive constant ar@(f (n)) meansO (f(n) poly(logn)).)

Due to this evaluation of the cryptosystems, it is shown that our multi-bit versions encrypt
O(logn)-bit plaintexts into ciphertexts of the same length as the original ones with reasonable
sacrifices of the hardness of the underlying lattice problems.

The ciphertexts of our multi-bit version are distributed in the same ciphertext space, the-
oretically represented with real numbers, as the original cryptosystem. To represent the real
numbers in their ciphertexts, we have to round their fractional parts with certain precision. The
size of ciphertexts then increases if we process the numbers with high precision. We stress that
our technique does not need higher precision than that of the original cryptosystems, i.e., we
take the same precision in our multi-bit versions as that of the original ones.

SeeTable 3.1for the cryptosystems studied in this chapter. (The problems in the “security”
fields are defined isection 2.2

We call the cryptosystems proposed BGH97a Reg04 Reg05 Ajt05] ADGGH, R04,

RO5, and AO05, respectively. We also call the corresponding multi-bit versions mbADGGH,
mbR04, mbRO05, and mbAO5.

We also focus on the algebraic property we pakkudohomomorphisof the lattice-based
cryptosystems. The homomorphism of ciphertexts is quite useful for many cryptographic ap-
plications. (See, e.g.Rap04.) In fact, the single-bit cryptosystems ADGGH, R04, R05 and
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AO5 implicitly have a similar property to the homomorphism. E€k;) andE(x,) be cipher-

texts ofx; andx, € {0, 1}, respectively. ThenE(x,) + E(x) becomes a variant &(x; & X»).

More preciselyE(x;) + E(xz) does not obey the distribution of the ciphertexts, but we can guar-
antee the same security level as that of the original cryptosystem and de¢xypt+ E(x;) to

X1 @ X by the original private key with a small decryption error. We refer to this property as the
pseudohomomorphism. Goldwasser and Kharchenko actually made use of a similar property
to construct the plaintext knowledge proof system for the Ajtai-Dwork cryptosysto}|
(SeeChapter 5.

Unfortunately, it is only ovelZ, (and direct product groups &, by concatenating the
ciphertexts) that we can operate the addition of the plaintexts in the single-bit cryptosystems. It
is unlikely that we can naively simulate the addition over large cyclic groups by concatenating
ciphertexts in such single-bit cryptosystems.

In this chapter, we present the pseudohomomorphic property of mbADGGH, mbRO04,
mbRO05, and (a slightly modified version mbAQ&) mbAO5 over larger cyclic groups. We
believe that this property extends the possibility of the cryptographic applications of the lattice-
based cryptosystems.

Main ldea for Multi-Bit Constructions and Their Security.  We can actually find the fol-
lowing general structure behind the single-bit cryptosystems ADGGH, R04, R05, and A05:
Their ciphertexts of O are basically distributed according to a periodic Gaussian distribution
and those of 1 are also distributed according to another periodic Gaussian distribution whose
peaks are shifted to the middle of the period. We thus embed two periodic Gaussian distribu-
tions into the ciphertext space such that their peaks appear alternatively and regularly. (See the
left side ofFigure 3.1)

Our technique is based on a generalization of this structure. More precisely, we regularly
embedmultiple periodic Gaussian distributions into the ciphertext space rather than only two
ones. (See the right side bigure 3.1) Embeddingp periodic Gaussian distributions as shown
in this figure, the ciphertexts for a plaintexi {0,..., p — 1} are distributed according the
i-th periodic Gaussian distribution. This cyclic structure enables us not only to improve the
efficiency of the cryptosystems but also to guarantee their security.

If we embed too many periodic Gaussian distributions, the decryption errors increase due
to the overlaps of the distributions. We can then decrease the decryption errors by reducing
their variance. However, it is known that smaller variance generally makes such cryptosystems
less secure, as commented ®@GH973. We therefore have to evaluate the tradEsaon our
multi-bit versions between the decryption errors and their security, which depend on their own
structures of the cryptosystems.
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Figure 3.1:the embedding of periodic Gaussian distributions.

Once we evaluate their tradé¢fs, we can apply a general strategy based on the cyclic struc-
ture to the security proofs. The security of the original cryptosystems basically depends on the
indistinguishability between a certain periodic Gaussian distribubi@md a uniform distribu-
tion U since it is shown in their security proofs that we can constructiacient algorithm for
a certain hard lattice problem by employing dfiaent distinguisher betweeh andU. The
goal is thus to construct the distinguisher from an adversary against the multi-bit version.

We first assume that there exists afiogent adversary for distinguishing between two
Gaussian distributions corresponding two kinds of ciphertexts in our multi-bit version with
its public key. By the hybrid argument, the adversary can distinguish either betyesa U
or betweend; andU. We now suppose that it can distinguish betwégrandU. Note that
we can slided; to @y corresponding to ciphertexts of O even if we do not know the private key
by the cyclic property of the ciphertexts. Thus, we obtainficient distinguisher betweeby
andU. @ is in fact a variance-reduced version of the periodic Gaussian distrib@tiosed
in the original cryptosystem. We can guarantee the indistinguishability between such a version
®, andU is based on the hardness of another lattice problem slightly easier than the original
one. We can therefore guarantee the security of our multi-bit versions similarly to the original
ones.

Encryption and Decryption in Multi-Bit Versions.  We also exploit this cyclic structure for

the correctness of encryption and decryption procedures. In the original cryptosystems except
for RO5, the private key is the periatbf the periodic Gaussian distribution, and the public key
consists of the information for generating the periodic Gaussian distribution corresponding to
0 and the information for shifting the distribution to the other distribution corresponding to 1.
The latter information for the shift essentiallykéd/2) for a random odd numbée Then, if

we want to encrypt a plaintext 0, we generate the periodic Gaussian distribution corresponding
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to 0. Also, if we want to encrypt 1, we generate the distribution corresponding to O and then
shift it using the latter information.

The private and public keys in our multi-bit versions are slightlfestent from those of
the original ones. The majorftierence is the information for shifting the distribution. If the
size of the plaintext space 3 the information for the shift is essentialkfd/p), where the
numberk must be a coprime tp for unique decryption. We then interpret the numbkes a
generator of the “group” of periodic Gaussian distributions. We adopt a prime as the size of the
plaintext spacep for efficient public key generation in our constructions. The private key also
contains this numbeék other than the period. Therefore, we can construct correct encryption
and decryption procedures using this informatkon

In the cases of RO5 and mbRO5, it is not necessary for keys to contain the information for
the shift. We can actually obtain such information due to their own structures even if it is not
given from the public key. Thug is not necessarily a prime in mbRO05.

Pseudohomomorphism in Multi-Bit Versions. The regular embedding of the periodic
Gaussian distributions also gives our multi-bit cryptosystems the algebraic property named
pseudohomomorphisrRecall that a Gaussian distribution has the following reproducing prop-
erty: For two random variable$; andX, according taN(my, s3) andN(m,, s3), whereN(m, s?)

is a Gaussian distribution with meamand standard deviatios) the distribution ofX; + X5 is

equal toN(m, + mp, ¢ + s3). This property implies that the sum of two ciphertexts (i.e., the
sum of two periodic Gaussian distributions) becomes a variant of a ciphertext (i.e., a periodic
Gaussian distribution with larger variance). This sum can be moreover decrypted into the sum
of two plaintexts with the private key of the multi-bit version, and has the indistinguishability
based on the security of the multi-bit version. By precise analysis of our multi-bit versions, we
estimate the upper bound of the number of the ciphertexts which can be summed without the
change of the security and the decryption errors.

3.2 A Multi-Bit Version of the Improved Ajtai-Dwork Cryp-
tosystem

We discuss the improved Ajtai-Dwork cryptosystem ADGGH given by Goldreich, Goldwasser,
and Halevi GGH974 in detail and apply our technique to construction of its multi-bit version
MbADGGH in this section.

17



3.2.1 The Improved Ajtai-Dwork Cryptosystem and Its Multi-Bit Ver-
sion

For understanding our construction intuitively, we first overview the protocol of ADGGH. Let
N = n" = 2" \We define am-dimensional hypercub€ and ann-dimensional balB; as
C=xeR":0<x<Ni=1...,nfandB, = By,(0,n"/4) = {x € R" : ||X|| < n™"/4}

for any constant > 7, respectively. Fou € R" and an integer we define a hyperpland; as

Hi = {xeR":(x,uy =i}.

=

oS

Figure 3.2:ciphertexts of 0 in ADGGH. Figure 3.3:ciphertexts of 1 in ADGGH.

Roughly speaking, ADGGH encrypts 0 into a vector distributed closely around hidden
(n — 1)-dimensional parallel hyperplanét, Hi, H,, ... for a normal vectou of Hy, and
encrypts 1 into a vector distributed closely around their intermediate parallel hyperplanes
Ho + u/(2||ul®), Hy + u/(2]julj?),.... (SeeFigure 3.2andFigure 3.3) Then, the private key
is the normal vectou. These distributions of ciphertexts can be obtained from its public key,
which consists of vectors on the hidden hyperplanes and informiatfonshifting a vector on
the hyperplanes to another vector on the intermediate hyperplanes. If we know the normal vec-
tor, we can reduce thedimensional distribution to on the 1-dimensional one along the normal
vector. Then, we can easily find whether a ciphertext distributed around the hidden hyperplanes
or the intermediate ones.

We now describe the protocol of ADGGH as follows. Our description slightly generalizes
the original one by introducing a parametewhich controls the variance of the distributions
since we need to estimate a trad&{metween the security and the size of plaintexts in our
multi-bit version.

Cryptosystem 3.2.1(ADGGH [AD97, GGH974). All the participants agree with the secu-
rity parametemn, the variance-controlling parameterand the precision2 for rounding real
numbers.

Key Generation: We chooseu uniformly at random from then-dimensional unit ball.
Let m = nd. Repeating the following proceduma times, we samplan vectors
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Vi,...,Vm: (1) We chooseg; from {x € C : (x,u) € Z} uniformly at random,
(2) chooseby, ..., b, from B, uniformly at random, (3) and outpwf = a + Z?zlbj
as a sample. We then take the minimum indgxsatisfying that the width of
P(Vigs1s - - - » Vigsn) IS at leastn~2N, where width of a parallelepipeg(xa, ... X,) is de-
fined as mip,__, Dist(x;, spank, .. ., Xi-1, Xi+1, - - - » X)) for a distance function Dist()
between a vector and an £ 1)-dimensional hyperplane. Now let = v;,,; for every
je{l,....,n,,V = (Vy,...,Vp), andW = (wq,...,W,). We also choose an indéxuni-
formly at random fronti : (&, u) is odd, whereg; is the vector appeared in the sampling
procedure fown;. Note that there are such indicesandi, with probability 1— o(1). If
such indices do not exist, we perform this procedure again. To guarantee the security,
|lul| should be in [¥2,1). The probability of this event is exponentially close to 1. If the
condition is not satisfied, we sample the veaiargain. Then, the private key isand
the public key is VY, W.i,).

Encryption: Let S be a uniformly random subset ¢1,2,...,m}. We encrypt a plaintext
o €{0,1}toX = Vi, + Yics Vi modP(W).

Decryption: Letx € (W) be a received ciphertext. We decryqb O if frc ((x, u)) < 1/4 and
to 1 otherwise.

Carefully reading the results i\p97, GGH974, we obtain the following theorem on the
cryptosystem ADGGH.

Theorem 3.2.2(|GGH973d). The cryptosystemPADGGH encrypts al-bit plaintext into an
nfn(log n+ 1)]-bit ciphertext with no decryption error. The securityXiDGGH is based on the
worst case of " *°)-uSVPfor r > 7. The size of the public key iS(® logn) and the size of
the private key is (v?).

As commented inCai03, we can actually improve the security of ADGGH by a result
in [Cai03. We give the precise proof iBection 3.2.5

Theorem 3.2.3.The security oADGGH is based on the worst case of®*4)-uSVPforr > 7.

We next describe the multi-bit version mbADGGH of ADGGH. Ilpebbe a prime such that
2 < p < n~’, where the parametercontrols a trade4b between the size of the plaintext space
and the hardness of underlying lattice problems. In mbADGGH, we can encrypt a plaintext
of log p bits into a ciphertext of the same size as ADGGH. The strategy of our construction
basically follows the argument i&ection 3.1 Note that the parameteris chosen to keep our
version error-free.

Cryptosystem 3.2.4mbADGGH). All the participants agree with the parameteys and the
precision 2" similarly to ADGGH, and additionally the sizeof the plaintext space.
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Key Generation: The key generation procedure is almost the same as that of ADGGH. We
choose an indeK uniformly at random frondi : (a;, u) # 0 modp} instead ofi; in the
original key generation procedure. We set decryption informakien (&, u) mod p.

Note that there is suchkawith probability 1- (1/p)™ = 1 - o(1). Then, the private key
is (u, k) and the public key is\( W, i}).

Encryption: LetS be a uniformly random subset (3, 1}™. We encrypio- € {0,...,p— 1} to
X = %vyl + Yies Vi mod P(W).

Decryption: We decrypt a received ciphertexte (W) to | p(x, uy] k* mod p, wherek is
the inverse ok in Zj,.

Before evaluating the performance of mbADGGH precisely, we give the summary of the
results as follows.

Theorem 3.2.5(security and decryption errotslet r > 7 be any constant and let(p) be

a prime such tha? < p(n) < n~’. The cryptosystermbADGGH encrypts allog p(n)]-bit
plaintext into an fn(logn + 1)]-bit ciphertext without the decryption errors. The security of
mbADGGHis based on the worst case ofi#)-uSVP. The size of the public key is the same
as that of the original one. The size of the private kgyag p(n)] plus that of the original one.

Theorem 3.2.6(pseudohomomorphism)et r > 7 be any constant. Also, let p be a prime
and letk be an integer such thaip < n"~’. Let E, be the encryption function sibADGGH
For any k plaintextso,...,o, (0 < o7 < p - 1), we can decrypt the sum efciphertexts

iz Em(oi) modP(W) into Y, oy mod p without decryption error. Moreover, if there exist
two sequences of plaintexts,...,o) and (o7,...,0;), and a polynomial-time algorithm
that distinguishes betweégry_, En(oi) modP(W) and 3i_; En(of) mod (W) with its public
key, then there exists a polynomial-time algorithm that solv@s*¢)-uSVPin the worst case
with non-negligible probability.

3.2.2 Decryption Errors of mbADGGH

We first evaluate the decryption error probability in mbADGGH. The following theorem can
be proven by a similar argument to the analysisAiD97, GGH973. Since we generalize this
theorem for analysis of the pseudohomomorphism in mMbADGGHke¢rem 3.2.18 we here
give a precise proof.

Theorem 3.2.7.The cryptosystermmbADGGH makes no decryption errors.

Proof. Since the decryption error probability for any ciphertext can be estimated by sliding the
distribution to that of the ciphertext of O, we first estimate the decryption error probability for
the ciphertext of O.
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LetH := {x € R": (x,u) € Z}. From the definition, Dist{,H) <n-n"/4forl1<i <m.
Thus, we can obtain fi@v;, u)) < n*~"/4 and fra((Xics Vi, UY) < n*"/4. Next, we estimate an
inner product betweep,.s vi modP(W) andu. Let Y, .sVvi =1 + 2?=1 q;w;, wherer € P(W).
Since|jw;|| > n2N andp < n"~7, we havegj| < n® and

1 1 5 1
< .n2. —nlr _4—r<_7—r<_.
frc((r,u)) <n-n 4n + 4n < 16n <2
Therefore, we decrypt a ciphertext of 0 into 0 without decryption errors.
Now let p be a ciphertext ofr. LetZ +a = {x € R : frc(x) < a} fora > 0 and
Z+a+b:={xeR:frc(x—a) < b}fora b> 0. By a property of the key generation, we have

(Vi,/p,u) € Z+k/p+n'/4pand

(o, u) €Z + Ea + £n7‘r + inl‘ro- + }n""r CZ+—0+ §n7‘r.

16 4p 4 p 8

Therefore, we obtaifp,u) € Z + ko/p = 1/(2p) and decrypf into o without decryption
errors. 0

3.2.3 Security of mbADGGH

We next prove the security of mbADGGH. L6t be a uniform distribution ogP(W). We
denote the encryption function of ADGGH Iy defined as a random varialdigo, (V, W,i1))
for a plaintexto- and a public key , W.i;). If the public key is obvious, we abbreviate
E(o, (V,W.i,)) to E(o). Similarly, the encryption functiok,, is defined for mbADGGH.

First, we show that the indistinguishability between two certain distributions is based on
the worst-case hardness of uSVP. The following lemma can be obtained by combingog
rem 3.2.3and the results inAD97] and [GGH974 with our generalization.

Lemma 3.2.8([AD97, GGH974). If there exists a polynomial-time distinguisher between
(E(0), (V. Wip)) and (Upwy), (V, Wi1)), there exists a polynomial-time algorithm for the worst
case of @n"+4)-uSVPforr > 7.

We next present the indistinguishability between the ciphertexts of 0 in mMbADGGH and
Upw)-

Lemma 3.2.9.If there exists a polynomial-time algorithi»; that distinguishes between
(Em(0), (V,Wi7)) and (Upw), (V, W,i7)), there exists a polynomial-time algorithfi, that dis-
tinguishes betweefiE(0), (V, W, i1)) and (Upw), (V, W, i1)).

21



Proof. We denote by(n) the non-negligible gap of the acceptance probabilityefbetween
Em(0) andUp, with its public key. We will construct the distinguish&r, from the given
algorithm®;,. To runD; correctly, we first find the indei¥ by estimating the gap of acceptance
probability betweerte,(0) andU ) with the public key. If we can fing, we output the result

of D usingij with the public key. Otherwise, we output a uniformly random bit. For random
inputs of ciphertexts and public keys, the above procedure can distinguish between them.

We now describe the details dD, as follows. We denote byx and {,Wi;) a ci-

phertext and a public key of ADGGH given as an input 0p, respectively. Also, let

Po = PrID.(En(0), (VW j)) = 1] andpy = PrDi(Upw), (VW j)) = 1], where the proba-
bility po is taken over the inner random bits of the encryption procedurepgnsd taken over

Upquy.

(D1) For everyj € {1,...,m}, we runD1(En(0), (V, W, j)) and D1 (Upwy, (V, W, j)) T = n/&?
times. Letxy(j) andxy(j) be the number of 1 in the outputs 6f; for the ciphertexts of
0 and the uniform distribution with the indgxrespectively.

(D2) If there exists the index such thatxo(]’) — xu(j')I /T > &/2, we takej’ as the compo-
nent of the public key.

(D3) We outputD(x, (V, W, j)) if we find j’. Otherwise, we output a uniformly random bit.

Note that we havépy — Xo())/T| < /4 and|py — xu(]’)/T| < /4 with probability exponen-
tially close to 1 by the Hoéding bound Hoe63. Therefore, we succeed to choose the ingex
with which D can distinguish between the target distributions with probability exponentially
close to 1 if}’ exists. By the above argumeud; works correctly for a non-negligible fraction

of all the inputs. O

The next lemma can be proven by the hybrid argument.

Lemma 3.2.10.If there existo1, 05 € {0,..., p— 1} and a polynomial-time algorithrd; that
distinguishes betweefEm(c1), (V, W,i7)) and (Em(c2), (V, W.i})), there exists a polynomial-
time algorithm®, that distinguishes betwedk,(0), (V, W,i})) and (Upw), (V, W,i})).

Proof. By the hybrid argument, the distinguish€); can distinguish betweek(c1) and
Upw) or betweenEn(oz) and Upw, with its public key. Without loss of generality, we
can assume thab; can distinguish betweeky(o1) and Upwy with its public key. Note
that we haveEn(o1, (V,Wi})) = En(0,(V,Wi})) + %vifl modP(W) by the definition of
Em. Then, we can transform a given from E(0, (V, Wi})) to another samplg from
Em(o1, (V, W i])). We can therefore obtain the polynomial-time algoritfimthat distinguishes
between Ex(0). (V. W.i1)) and Upw. (V. Wii7). 0
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By the above three lemmas, we obtain the security proof for our multi-bit version
MbADGGH.

Theorem 3.2.11.If there exist plaintexts-,, 05 € {0,..., p— 1} and a polynomial-time algo-
rithm that distinguishes between the ciphertexis odndo, of mMbADGGHwith its public key,
there exists a polynomial-time algorithm for the worst-case @f @®)-uSVPforr > 7.

3.2.4 Pseudohomomorphism of mbADGGH

As stated inTheorem 3.2.6mbADGGH has the pseudohomomorphic property. To demonstrate
this property, we have to evaluate the decryption errors for sum of ciphertexts and prove its
security.

Decryption Errors for Sum of Ciphertexts. First, we evaluate the decryption errors when
we apply the decryption procedure to the sum of ciphertexts in mbADGGH. RecéllHzat=
{xeR:frc(x)<ajfora>0andZ+a+b:={xeR:frc(x—a)<b}forab>0.

Theorem 3.2.12.Let r > 7 be any constant. Also let p be a prime antle an integer such
thatxp < n"~’. For any« plaintextso,...,o, (0 < o < p— 1), we can decrypt the sum of
ciphertextsyi_; Em(ci) mod#(W) into 3., o mod p without the decryption errors.

Proof. We definep,, ..., p. as ciphertexts ofr, ..., o, respectively. We will show that we
can decrypp = >;i_; pi modP(W) into }i_; o mod p. From the proof ofTheorem 3.2.7we
have . 3

<pi, U> eZ+ B(Ti + §n7_r.

Hence, we obtain
d K < 3
<Z,0i, uezZ+ — Z o+ —xkn’".
i=1 p i=1 8

Combining with the facph; € P(W) andkp < n~’, we have

K < 3 1 K < 1 K < 1
PWEZ+— Y gyt =kN "+ k" CZ+—= ) gix =N CZ+ =) 0o+ —.
p ; '"8 4 p IZ;A ' 2 P ; ' 2p
Therefore, we correctly decryptinto }i_; o mod p. |

Security for Sum of Ciphertexts. We can also give the security proof for the sum of ci-
phertexts in mbADGGH. The security proof obeys so general framework that we can apply
the same argument to the security of sum of ciphertexts in the other multi-bit versions mbR04,
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mbRO05, and mbAQ5 For convenience of the other multi-bit versions, we here present an ab-
stract security proof for sum of ciphertexts. We denote the encryption function of our multi-bit
cryptosystems by, also regarded as a random variabBlg(c, pk) for a plaintexto- and a
public key pk. If the public key is obvious, we abbreviakg, (o, pK) to E,(0). Let C be the
ciphertext space ard. be the uniform distribution o@.

We first show that it is hard to distinguish between the sum of ciphertexts and the uniform
distribution if it is hard to distinguish betweersamples front,,(0) and those front..

Lemma 3.2.13.If there exist two sequences of plainteXts,,...,o,) and (o7,...,07)
and a polynomial-time algorithmD; that distinguishes betwee(;;_; En(oi), pk) and
(2iz1 Em(07), pK), then there exists a polynomial-time algoritlida that distinguishes between
k ciphertexts and its public k¥ (0, pK), .. ., En(O, pK), pk) and uniformly randonx cipher-
texts and the public ke, .. ., Uc, pK).

Proof. By the hybrid argument, the distinguish®y can distinguish between;_, E (o) and
Uc or betweenyi_; En(o7) and U¢ with its public key. Without loss of generality, we can
assume thaD; can distinguish betweery{_;, En(ci), pk) and Uc, pK). By (o1, ...,0%), we
can transform En(oy), . .., Em(o), pK) into (Xi_; Em(ci), pk). This shows the polynomial-
time distinguished,. O

As already stated isection 3.1(andLemma 3.2.9n the case of ADGGH), the original
security proofs of ADGGH, R04, RO5 and AO5 show that we halfieient algorithms for
certain lattice problems if there is afffieient distinguisher betweeB,(0) andU; with its
public key. By the similar argument to that in original proofs, we also have such algorithms
from efficient distinguishe, between E,(0), ..., En(0), pk) and U, ..., Uc, pK). Thus, we
obtain from®, in Lemma 3.2.13 probabilistic polynomial-time algorithiiAl that solve the
worst case 0O(n"*4)-uSVP in the case of MbADGGH.

By combining the above discussion witlemma 3.2.13we guarantee the security of the
sum of ciphertexts in mbADGGH.

Theorem 3.2.14.1f there exist two sequences of plaintgxts,...,o,) and (07,...,07)

and a polynomial-time algorithmD; that distinguishes betwee(;;_; En(oi), pKk) and

(221 Em(o{), pK), then there exists a probabilistic polynomial-time algoritt#inthat solves
the worst case of *4)-uSVPin the case omMbADGGH

3.2.5 Proof of Theorem 3.1.3

For the proof ofTheorem 3.2.3we first describe the transference theorems.
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Transference theorems

Let B(r) be ann-dimensional ball irR" centered a0 with radiusr, i.e.,B(r) = {x e R" : ||x|| <
ri.

Definition 3.2.15(Minkowski’s successive minima)-or ann-dimensional latticd in R" the
i-th successive minimg(L) is defined as follows:

(L) = min max||v;

1oVi€L 1< <i

| b

where the sequence of vectors...,v; € L ranges over all linearly independent lattice
vectors.

It is not hard to show that

Ai(L) =min{r :  max )dim(span(ll,...,vi)) =i}

V1,...,VvieLNB(r

Banaszczyk showed the following transference theorerBam93.

Theorem 3.2.16([Ban93). For every n-dimensional lattice L and every constant 8/2r,
Ai(L) - Ansisa(L) < cn,
for all sufficiently large n.

We say a sublattice” C L is asaturated sublatticé L’ = L n span(’), where spari(’) is
the linear subspace &" spanned by the basis bf. For 1< i < n, we defineg;(L) to be the
minimumr such that the sublattice generatedlbg B(r) contains an-dimensional saturated
sublatticeL’. Clearly,4;(L) < gi(L) for1 <i <n.

Cai improvedTheorem 3.2.1@s the following theorem.

Theorem 3.2.17([Cai03). For every an n-dimensional lattice L and for every constant ¢
3/2n,
Ai(L) - Gn-iva(L) < cn

for all sufficiently large n.

Main Proof
Now, we give the proof oTheorem 3.2.3

Proof of Theorem 3.2.3The proof is similar to the argument oAD96, AD97]. Let H, be
the distribution ofv; in the key generation procedure of ADGGH. Ajtai and Dwork gave the
following two lemmas.
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Lemma 3.2.18Lemma 8.1, AD97]). If there exists a probabilistic polynomial-time algorithm
D, such that distinguishes betweeifOEand Uy, with (V, W), there exists a probabilistic
polynomial-time algorithnm®, such that distinguishes between Bind Uz, where W is an
uniform distribution on C.

Lemma 3.2.19Lemma 8.2, AD97]). If there exists a probabilistic polynomial-time algorithm
D, such that distinguishes betweenr Bnd U, there exists a probabilistic polynomial-time
algorithm A such that solve the worst case qhf-uSVP.

We now evaluate the value dfn). Given an instance of (n)-uSVP, we obtain a lattice
L by certain linear transformations shown h)97] such that we canf&ciently compute its
shortest vectou if there exists an féicient attacking algorithm for ADGGH. Then, the dual
lattice J = L* of L has a saturated sublattidéon a hyperplandl, orthogonal tou. Let| be
the length of the smallest basis & where the length of the badgs= (vi,...,V,) is defined
..... n [IVill.

It is also commented inAD97] that the length of the smallest basis a¥ is approxi-
matelyO(n?/ f(n)). It also holds that this upper bound@n—"-3) by combining the argument
in [AD97] with our generalization. Thus, we obtafiin) = O(n"*>).

On the other hand, we obtaity(L) - 9,-1(L*) < cnby Theorem 3.2.1%ith i = 2, i.e.,
A(L) - 1 < cnfor some constant > 3/27. We can also see thas(L) > f(n)|lu|| from the

as max.

definition. Thus, we can obtain an upper bo@@/ f (n)) of I.
By the above argument, we obtafifn) = O(n"*4), which completes the proof dfheo-
rem 3.2.3 O

3.3 A Multi-Bit Version of the Regev’04 Cryptosystem

3.3.1 The Regev’'04 Cryptosystem and Its Multi-Bit Version

In this section we consider the Regev cryptosystem R04 proposéstgOf}. Roughly speak-

ing, the ciphertexts of 0 and 1 approximately corresponds to two periodic Gaussian distributions
in RO4. (Sed-igure 3.4andFigure 3.5) We now denote the distributions of the ciphertexts of

0 and 1 asb, and®,, respectively. Note that every peakdn is regularly located in the middle

of two peaks ind,. A parameteh is approximately equal to the number of peakey) and a
private keyd, obtained fromh, corresponds to length of the period. A public key is of the form
(az,...,am, o), Wwherea,, .. ., a, are samples fronp, to make a ciphertext of 0 by summing up
randomly chosen elements from the samples and a certainigdeA, . .., m} is used to shift

a ciphertext of O to that of 1 by addirag,/2 to a ciphertext of 0. One can easily see that we can
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distinguish betweerd, and®; with d. It however seems hard to distinguish them only with
polynomially many samples @b, andio. Actually, it is shown in Reg04 that breaking R04 is
at least as hard as the worst case of a certain uSVP.

Prob. #peaks = Prob. #ipeaks = 1
N AL

Figure 3.4:ciphertexts of 0 in RO4. Figure 3.5:ciphertexts of 1 in RO4.

In what follows, we precisely describe the original RO4. First, we recall the definition of
a folded Gaussian distributioff, whose density function i¥,(l) = >z (1/a) expEr((l —
K)/@)?). This distribution is obtained by “folding” a Gaussian distributiN0, o%/(2)) on
R into the interval [01). Note that this folded Gaussian distribution is equivalent with the
fractional part ofN(0, a?/(2r)). Based on this distribution, RO4 makes use of a periodic distri-
bution®,, defined by the following density functio®, ,(l) = ¥.(Ih mod 1). We can sample
values according to this distribution by using samples figmas shown inlReg04: (1) We
samplex € {0,...,[h]} uniformly at random and then (2) sampfeaccording to¥,. (3) If
0 < (x+Yy)/h < 1, we then take the value as a sample. Otherwise, we repeat (1) and (2).
LetN = 25", m = ¢on? for a sufficiently large constarty, andy(n) = w(n+/logn), specify-
ing the size of the ciphertext space, the size of the public keys, and the variance of the folded
Gaussian distribution, respectively. In this section, we require precisionZﬁf2 1= 1/N for
rounding real numbers.

Cryptosystem 3.3.1(R04, [Reg04). All the participants agree with the security parameter
and the precision3".

Key Generation: Let H = {h € [VN,2VN) : frc(h) < 1/(16m)}. We chooseh € H
uniformly at random and sat = N/h. The private key is the numbet. Choosing
a € [2/y(n),(2V2)/y(n)), we samplem valuesz, ..., z, from the distribution®,,,
wherez = (X +V;)/h (i = 1,...,m) according to the above sampling procedure. Let
a = [Nz] for everyi € {1,..., m}. Note that we have an indexsuch thatx;, is odd with
a probability exponentially close to 1. Then, the public keyais (. ., an, io).
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Encryption: We choose a uniformly random subs8tof {1,...,m}. The ciphertext is
Yiies & ModN if the plaintext is 0, and} s & + |&,/2]) mod N if it is 1.

Decryption: We decrypt a received ciphertexte {0,...,N — 1} to 0 if frc (w/d) < 1/4 and
to 1 otherwise.

Summarizing the results irReg04 on the size of plaintexts, ciphertexts, and keys, the
decryption errors, and the security of RO4, Regev proved the following theorem.

Theorem 3.3.2([Reg04). The cryptosysterR04 encrypts al-bit plaintext into an8n?-bit
ciphertext with decryption error probability at mogt2*™/m 4 2-2M_ The security oR04is
based on the worst case off@n) v/n)-uSVP. The size of the public key igii) and the size of
the private key is @v?).

We next propose a multi-bit version mbRO04 of the cryptosystem R04p beta prime such
that 2< p < n" ands(n) = w(n** \/@) for any constant > 0, where the parametecontrols
the trade-ff between the decryption errors (or the size of plaintext space) and the hardness
of underlying lattice problems. Our cryptosystem mbR04 can encrypt opeptdintexts in
{0,..., p—1} into a ciphertext of the same size as one of R04.

As mentioned above, R04 relates the ciphertexts to two periodic Gaussian distributions
®, and ®; such that each of them has one peak in a period of ledgtlOur construction
follows the argument ifsection 3.1 The idea of our cryptosystem is embeddingogderiodic
Gaussian distribution®,, . . ., ®,_; corresponding to the plaintex, . .., p— 1} into the same
period of lengthd. We also adjust the parameterwhich &fects the variance of the Gaussian
distributions, to bound the decryption errors. Note thaftif@lso dfects the decryption errors.
Therefore, adjusting the skt simultaneously withy, we have to reduce the decryption errors
by frc (h). Based on the above idea, we describe our cryptosystem mbR04 as follows.

Cryptosystem 3.3.3(mbR04) All the participants agree with the parametemandr, the pre-
cision 28" and the size of the plaintext space.

Key Generation: Let H, = {h € [VN,2VN) : frc(h) < 1/(8n'm)}. We chooseh € H,
uniformly at random and set= N/h. Choosingr € [2/6(n), (2V2)/5(n)), we samplen
valueszy, ..., zZ, from the distributiondy,,, wherez = (x;+y;)/h (i = 1,..., m) according
to the above sampling procedure. lagt= [Nz] for everyi € {1,...,m}. Additionally,
we choose an indeig uniformly at random frondi : x; # 0 modp}. Then, we compute
k= x, mod p. The private key isd, k) and the public key is&j, . . ., am, ig).

Encryption: Leto € {0,..., p— 1} be a plaintext. We choose a uniformly random sulSset
{1,...,m}. The ciphertext i£2ies a+o [a%/pD mod N.
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Decryption: For a received ciphertext € {0,...,N — 1}, we computer = w/d mod 1. We
decrypt the ciphertext to | pr1k™* mod p, wherek™ is the inverse ok in Z,,.

Before evaluating the performance of mbR04 precisely, we give the summary of the results
as follows.

Theorem 3.3.4.For any constant r> 0, let 5(n) = w(n**' \/m) and let gn) be a prime
such that2 < p(n) < n". The cryptosystermbRO04encrypts g log p(n) |-bit plaintext into an
8n2-bit ciphertext with decryption error probability at maat{(#*™/(*m) 4 2-20) The security
of mbRO04is based on the worst case ofdn) +/n)-uSVP. The size of a public key is the same
as that of the original one. The size of a private keplag p(n)]| plus that of the original one.

For example, setting(n) = n'*"logn for any constant > 0, we obtain anr logn]-bit
cryptosystem with negligible decryption error, whose security is based on the worst-case of
O(n*>*" logn)-uSVP.

Theorem 3.3.5(pseudohomomorphism)et 5(n) = w(n*' \/W). Also let gn) be a prime
and k an integer such thatp < n' for any constant r> 0. Let E, be the encryption func-
tion of mbR0O4 For any « plaintextso,...,o, (0 < oy < p - 1), we can decrypt the
sum ofk ciphertexts},i_; Em(ci) modN into }i_; o mod p with decryption error probabil-

ity at most2-@M)*/n*m Moreover, if there exist two sequences of plaintéxts. . ., o) and

(0%, ...,0), and a polynomial-time algorithm that distinguishes betwggn En (o) modN

and }.i_; En(c7) modN with its public key, then there exists a polynomial-time algorithm that
solves @s(n) v/n)-uSVPin the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mbR04 stated in the above theorems.

3.3.2 Decryption Errors of mbR04

We give the analysis of the decryption errors without the proof since it can be done by a quite
similar analysis to Reg04 and we will prove the generalized theoreith€orem 3.3.1)Lin
Section 3.3.4

Theorem 3.3.6.The probability of the decryption errors mbRO04is at mos-2(0/m)

279,

3.3.3 Security of mbR04

In what follows, we evaluate the security of our cryptosystem mbR04. We first mention the
result in [Reg04 that the indistinguishability of two certain distributions is guaranteed by the
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hardness of a certain uSVP. Liét, andU, be the uniform distributions ov¢0, ..., N -1} and
[0, 1), respectively.

Lemma 3.3.7([Reg04). If there exists a polynomial-time distinguisher betwégp and U,
over uniformly random choices ofd[ VN, 2VN) ande € [2/8(n), 2V2/8(n)), there exists a
polynomial-time algorithm for the worst case of&n) v/n)-uSVP.

Thus, our task is to prove the security of our cryptosystem mbRO04 from this indistin-
guishability. For convenience of the proof, we introduce a parameterized versioroRb0é
cryptosystem RO4. In the key generation procedure of R4 sampleh from H, = {h €
[ VN, 2VN) : frc(h) < 1/(8n"'m)} ande from [2/6, 2V2/6) uniformly at random. The other
procedures in RO4are the same as R04. Similarly to the case of R04, we can show that the
indistinguishability between the ciphertexts of 0 in R@hd Uy can be guaranteed by the
indistinguishability betweemd,, andUy.

Lemma 3.3.8. For any constant r> 0, let p be a prime such th& < p < n" andé(n) =
w(nt* \/m). If there exists a polynomial-time algorithm that distinguishes between cipher-
texts of0 in RO4 and Uy with its public key, there exists a polynomial-time algorithm between
@y, and Uy over uniformly random choices ofd[ VN, 2VN) anda € [2/6(n), 2V2/8(n)).

This lemma can be proven by the same wayReg04 using the fact that @ m € poly(n).
By the same technique as the security proof of mMbADGGH, we obtain the following lemma.

Lemma 3.3.9.If there exist plaintexts, 0, € {0,..., p— 1} and a polynomial-time algorithm
that distinguishes between the ciphertextgrofand o, in mbR0O4with its public key, there
exists a polynomial-time algorithm that distinguishes between the ciphertexia 804 and
Uy with its public key.

By the above lemmas, we can show the security of mbR04 based on the hardness of uSVP.

Theorem 3.3.10.If there exist plaintexts-y, 05 € {0,..., p— 1} and a polynomial-time algo-
rithm that distinguishes between the ciphertexts-ofand o, in mbR0O4with its public key,
there exists a polynomial-time algorithm for the worst-case @{Q) v/n)-uSVP,

3.3.4 Pseudohomomorphism of mbR04

Decryption Errors for Sum of Ciphertexts.

Theorem 3.3.11(mbR04) Letd(n) = w(n**"flogn). Also let (n) be a prime andc be an
integer such thakp < n' for any constant r> 0. For anyk plaintextsoy,...,o, (0 < o <
p — 1), we can decrypt the sum efciphertextsy,;_; En(ci) modN into }i_; o mod p with
decryption error probability at mosg-(Em)*/n*m
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Before the proof, recallemma 2.3.denoting a bound of the tails of Gaussian distributions.
By Lemma 2.3.1one can see easily thatdf < 1/ v/n, the probability Pt o2 [IXI > 1/2] is
exponentially small im.

Proof. The proof is similar to the estimation of the decryption errorsRed04. First, we

show the case that we haweciphertexts of Op4,...,0.. The probabilities are taken over

the choices of the private and public keys and the inner random bits of the encryption pro-
cedure. LetS,,...,S, denote the subsets of indices used in the encryption procedure, i.e.,
Pi = Yjes, @ modN. Letp = 3 ) oy modN. Thus,

o — [Z (Z a; modd Lm] modd Lh1]

i=1 \ jeS;

<mk|N —d[h]] = mkd - frc (h) < —d

Similarly to the argument for evaluation of the decryption errorsiag04, we obtain

frc(g) i fm(ziil (Zies & mojld L) moddLm]

_ K 2ic1 Z:J'Esi a,
= B +frc( ] )

<%+%+frc[%222j],

where in the last inequality we use the fact that= | Nz |. Sincez; = (x; +y;)/handd = N/h,

szl

i=1 jeS; i=1 jeS; i=1 jeS;

Hence, we have

frc(z)<—+—+frc(22y,] +frc(ZZy,],

i=1 jeS; i=1 jeS

where we used the fact that= 2°¢") is much larger tham = cor?. All x; are strictly less than
[h1 -1 with probability exponentially close to 1. Conditioned on tlyat, . ., yn, are distributed
according ta¥,. Therefore, we have

w35

i=1 jeS;

Pr <Pr

)i

=1

The distribution ofzg":l ky; mod 1is¥ m,. SincevVimka = (m) we obtain

e [Z Z y,) ] < 27O /M) < =) /)

i=1 jeS;

Pr
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by Lemma 2.3.1 We thus obtain fr§p/d) < 1/(4p), which implies that we can decryptto 0
with decryption error probability at mostE)/me),

Next, we considek ciphertextg’, . . ., p, of plaintextso, ..., o, respectively and set =
Y10, modN. From the encryption procedurs, = p; + o {a,-b/p] mod N. By using the fact
thatk = x; mod p and thaty;; € Z + 1/(8n") with probability exponentially close to 1, we get
[a,-é/p] /d € Z+k/p+1/(8pn)+2/d. Hence, we have; [a,-é/p1 /d € Z+oik/p+£1/(8n")+2p/d.
This implies that

s lel gk S g P
i=1

Since fro(p/d) < 1/(4p), we obtain

o K < 1 Kk k+1 2/<p K v 1
_€Z+Bzaii@iﬁ 8mm d Z+E;O'iizj

with the probability at most 2™ /m™) \which completes the proof. O

Security for Sum of Ciphertexts. By a similar argument irBection 3.2.4we obtain the
following theorem.

Theorem 3.3.12.1f there exist two sequences of plaintgxts,...,o,) and (07,...,07)

and a polynomial-time algorithmD; that distinguishes betwee(;;_; En(o), pK) and

(221 Em(c), pK), then there exists a probabilistic polynomial-time algoritt#inthat solves
the worst case of (3(n) v/n)-uSVPin the case ombR04

3.4 A Multi-Bit Version of the Regev’'05 Cryptosystem

3.4.1 The RegeVv’05 Cryptosystem and Its Multi-Bit Version

The cryptosystem RO5 proposed in 200803 is also constructed by using a variant of
Gaussian distributions. A folded Gaussian distributiynover [Q 1) is given by a density
function ¥, () = Yz (1/@) expEn((l — K)/a)?). Letm = 5(n + 1)(2logn + 1) = ®(nlogn)
andq(n) € [n% 2] be a prime. The parameter = «(n) satisfying conditions thak(n) =
o(1/(+/nlogn)) anda(n)q(n) > 2+/nis used to control the variance of the distributiéfp.
(In [Reg03, « is set to J(+y/nlog?n).) We also describe the discretized distributionZan
from ¥,. The Gaussian distributio¥, on Zq is obtained by sampling fror¥,,, multiplying

g, and rounding the closest integer modualo The distribution can be formally defined as

= (1+1/2)/q
Wall) = [La2q FadX
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#peaks = P

Figure 3.6:cryptosystem RO5. Figure 3.7:multi-bit version of R05.

In RO5, the ciphertexts of 0 and 1 are vectorsZjhobtained from some Gaussian dis-
tributions, which are specified by vectaas ..., a, shared among all the participants in the
preparation procedure. Every coordinatef the ciphertext of O corresponds to a Gaussian
distribution onZ, with mear(a;, s) for the private keys. On the other hand, the ciphertext of 1
corresponds to the “opposite” Gaussian distribution. (Sgare 3.6)

Cryptosystem 3.4.1(R05, [Reg03). All the participants agree with the security parameter
n, the variance-controlling parameter and the precision 2. They also sharen vectors
a4,...,3ychosen fron’zg uniformly at random.

Key Generation: The private keys is chosen uniformly at random froj,. We also choose
€, ..., ey according to the distributioﬁ,. Letb = (&,s) + ¢ foreveryi € {1,...,m}.

Encryption: We choose a uniformly random subs8tof {1,...,m}. The ciphertext is
(Zics &, Yies by) if the plaintext is 0, and}i.s &, 10/2] + Yics by) if itis 1.

Decryption: We decrypt a received ciphertext b) € Zg X Zq into O if |b — (&, s)l; < 9/4, and
into 1 otherwise.

Note that the security reduction of RO5 is done by a polynomial-time quantum algorithm.
In other word, if RO5 is insecure, there exists a polynomial-time quantum algorithm for certain
lattice problems. As shown irReg03, the cryptosystem RO5 has the following performance.

Theorem 3.4.2([Reg03). The cryptosystenR05 encrypts al-bit plaintext into an(n +
1)[log ql-bit ciphertext with decryption error probability at mogt(Y/m*m) 4 2-2™  The
security ofR05is based on the worst case 8Y/Ps oy aNd SIVPsp () fOr polynomial-time
quantum algorithms. The size of the public key {(810g° n) and the size of the private key is
O(nlogn).
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We now give our cryptosystem mbRO5 based on R05. Sgere 3.7) Letr € (0,1) be
any constant, which controls the tradoetween the size of plaintext space and the hardness
of underlying lattice problems, anglbe an integer such that< n" = o(n), which is the size of
the plaintext space in mbR05. mbRO5 can encrypt a plaintggt in., p— 1} into a ciphertext
of the same size as R05. We use the same paranmetardq as R0O5 and introduce a parameter
B = B(n) = a(n)/n" = o(1/(n°>*"logn)) to control the distribution instead af in RO5. The
parametep(n) must satisfy3(n)q(n) > 2 /n.

Cryptosystem 3.4.3mbRO05) All the participants agree with the parameteyg, the precision
27", and the size of the plaintext space. They also sham@ectorsay, ..., a, chosen fron%g
uniformly at random.

Key Generation: This procedure is the same as R05 except that we saeple , e, from
¥,

Encryption: We choose a uniformly random subs®tof {1,...,m}. For a plaintextr €
{0,..., p— 1}, the ciphertext i$>}ics &, o [Q/P] + Dics bi)-

Decryption: We decrypt a received ciphertegd, b) to [ (b — (a, s)) p/q] mod p.

Before evaluating the performance of mbRO5 precisely, we give the summary of the results
as follows.

Theorem 3.4.4.Let p= p(n) be an integer such that(p) < n" for any constan® <r < 1. The
cryptosystermbRO0O5encrypts g log p(n) |-bit plaintext into an(n+1)[log q]-bit ciphertext with
decryption error probability at mo(1/mZmn™) . 2-2M  The security ofnbRO5is based on
the worst case 0BVPs,5) and SIVPs 4, for polynomial-time quantum algorithms. The
size of the public key and private key is the same as that of the original one.

For example, by setting(n) = n" for a constant 0< r < 1 andg(n) = 1/(n%**" log®n), we
obtain a|r logn|-bit cryptosystem with negligible decryption error whose security is based on
SVPé(nl,SH') and SIV%(n1.5+r).

Theorem 3.4.5(pseudohomomorphism).et p(n) be an integer and be an integer such that

kp < n" for any constanD < r < 1. Let E, be the encryption function @hbR05 For any«
plaintextso,...,o, (0 < o < p— 1), we can decrypt the sum efciphertextsy.; En(oi)

into 3, o mod p with decryption error probability at mog /™ On™) \here the addi-

tion is defined oveZy x Z,. Moreover, if there exist two sequences of plaintéxts. .., o)
and(c,...,0), and a polynomial-time algorithm that distinguishes betwgén En, (o) and

i1 Em(c) with its public key, then there exist polynomial-time quantum algorithms that solve

SVPs(nsmy) @and SIVPsn 4 IN the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mbRO5 stated in the above theorems.
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3.4.2 Decryption Errors of mbR05

We first estimate the decryption errors in our cryptosystem mbRO5. By replacing the parameter
a in RO5 to the paramet@&in mbRO5, we immediately obtain the evaluation of the decryption
errors fromTheorem 3.4.2The generalization of this theoreeorem 3.4.10is also given

in Section 3.4.4

Theorem 3.4.6.The probability of the decryption errors mbRO5is at mosg-(Y/ms*mn™)
2-0),

3.4.3 Security of mbR05

We next discuss the security of our cryptosystem mbRO5Uggt be the uniform distribution
over the ciphertext spac] x Zq of R05 (and mbR05). The strategy of the security proof for
mMbRO5 is similar to mbR04. We first mention the resultRe§03 that the indistinguishability
between the ciphertexts of 0 in RO5 ablgos is guaranteed by the worst-case hardness of
certain lattice problems.

Lemma 3.4.7([Reg09). If there exists a polynomial-time algorithm that distinguishes between
the ciphertexts d@ in RO5and Uggs with its public key, there exists a polynomial-time quantum
algorithm for the worst case @VPg /() and SIVPs(/0(n)-

We now consider a slightly modified version R@&th the distribution parametgt(n) =
a(n)/n" = o(1/(n°>*" logn)) instead ofx(n) in RO5. Since the tradefidbetween the decryption
error and the security of RO% obtained byrheorem 3.4.2we can show the following lemma
by the same technique as the security proof of mMbADGGH.

Lemma 3.4.8.If there exist plaintexts,, 05 € {0,..., p— 1} and a polynomial-time algorithm
that distinguishes between the ciphertextgrefand o, in mbRO5with its public key, there
exists a polynomial-time algorithm that distinguishes between the ciphertexia 805 and
Uros With its public key.

By these lemmas, we can obtain the security of our cryptosystem mbRO5.

Theorem 3.4.9.1f there exist plaintexts-y, 0, € {0,..., p— 1}, and a polynomial-time algo-
rithm that distinguishes between the ciphertextpando-, in mbRO5with its public key, there
exists a polynomial-time quantum algorithm for the worst-casgMis, 5y, and SIVPs 50 -

We omit the proof of the security since it is quite similar to mbADGGH.
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3.4.4 Pseudohomomorphism of mbR05
Decryption Errors for Sum of Ciphertexts.

Theorem 3.4.10(mbRO05) Let8(n) = o(1/(n®>*" logn)). Also let §n) be an integer and
be an integer such thatp < n" for any constanD < r < 1. For any« plaintextso, ..., oy
(0 < i < p—1), we can decrypt the sum otiphertextsy;_, En (o) into >, o mod p with
decryption error probability at mos2- /MmO where the addition is defined ov&} x Z.

Proof. The proof is similar to Reg03. First, we estimate the decryption errors for the sum
of x ciphertexts of 0,4, v1),..., (o« vs). The probabilities are taken over the choices of the
private and public keys and the randomness of the encryption procedui®,, Let, S, denote
the subsets of indices used in the encryption procedure,gigv;)(= (Xjes, @j> Xjes, bj)- Let
(p,v) = (Zi_1 pi» 2i-q vi)- Recall that we obtaii_; 3’ cs, €j = v —{p, s) in the key generation.

ZZQ modq

i=1 jeS;

We will show

Pr

S ng DJ] < 2-LmEE) (3.1)

whereey, ..., e are samples from the dlstrlbutioﬁ;. A sample from@ﬁ can be obtained by
samplingx; from ¥ and outputtindqx] modq. Notice that}’i_; >’ cs [qxﬂ modq is at most
mk < q/(16p) away from}.i_; >'jcs, 9% modq for suficiently largen. Therefore, it is stiicient

ZZQX

i=1 jeS;

to show

Pr > 1| < 27Q/mEEn)

16

wherexg, ..., X, are independently dlstrlbuted accordingitg That is, it is stficient to show

frc (Z Z ) } < 2-QL/(mpr)

i=1 jeS;

Pr

Similarly to the argument ifheorem 3.3.1lwe obtain

frc[zz ] frc{zm:,oq]> 1—ép

i=1 jeS; j=1

< 27 QYMP’B%) o - Q(L/mpEn*)

Pr <Pr

It follows that we can decryptp(v) into O with decryption error probability at most
2-Q(1/(mp?n?))

Next, we considek ciphertextsfy,v)),..., (o, v;) of plaintextso, ..., o, respectively.
We now set ’,v") = (XiL1p{, 21 v{). By the encryption procedure; = v; + o 19/pl.
Therefore, we have’ —(p’,s) = 3i_; 3 jcs, €j+ 21 i Ld/pl. Combining the equatior8(1) and
the fact thaty;_; o La/pl — X2y 070/ p| < «p < La/p] /4, we decryptg’, /) into ¥, o mod
p with decryption error probability at most&/ M), O
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Security for Sum of Ciphertexts. By a similar argument irBection 3.2.4we obtain the
following theorem.

Theorem 3.4.11.If there exist two sequences of plaintext;,...,o,) and (07,...,07%)

and a polynomial-time algorithmD; that distinguishes betwee(;_; En(oi), pk) and
(221 Em(c7), pK), then there exists a polynomial-time quantum algorithm for the worst case
of SVPsn/a(y @Nd SIVPs,amy) N the case oMbROS

3.5 A Multi-Bit Version of the Ajtai Cryptosystem

3.5.1 The Ajtai Cryptosystem and Its Multi-Bit Version

Let b be a uniformly random string dd(n? logn) bits andt be a random string ab(nlogn)
bits specified later. We denote b’ a Gaussian distribution on andimensional Euclidean
space with mear® and standard deviatios. The density function is given byg‘)(x) =
s exp(r [[x/s).

Note that, given an orthonormal basis fot, v’ can be written as the sum pforthogonal
1-dimensional Gaussian distributions along one of the basis vectors. For instance, given a basis
{en,.... e, VX)) = [T, (1/9) expnr(x/9)?) for anyx = 3, xe.

Ajtai showed how to generate a certain class fbcently representable lattices related
to hard problems inA4jt05]. He also succeeded to construct two lattice-based cryptosystems
based on the original Ajtai-Dwork cryptosysted}97] and the improved Ajtai-Dwork cryp-
tosystem GGH974. The latter one reduces decryption error from the former one by the idea
of [GGH974. In this section, we only describe the former one, which is related to security of
our cryptosystem.

Figure 3.8:ciphertexts of 0 in AO5.
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In the Ajtai cryptosystem A05, we make use of a periodic Gaussian distributi®i sach
that its peaks are located on the points of the dual lattice spanned by d&hafse instance
L(b,t) of uSVP obtained in the preparation procedure. Then, the periodic Gaussian distribution
looks like a “wave” going along the shortest vectoof L(b, t) since the dual lattice df(b, t),
which is an instance of uSVP, has a much longer interval betweenrtwol{-dimensional
sublattices orthogonal twthan others. (Seigure 3.8) Then, the ciphertexts of O correspond
to the periodic Gaussian distribution modyidF) and those of 1 correspond to the uniform
distribution on®P(F) in the cryptosystem A05. Similarly to the previous cryptosystems, if we
knowu, we can easily decrypt a received ciphertext by the inner product between the ciphertext
andu with high probability.

We now describe the details of the Ajtai cryptosystem AO05. All the participants share a
probabilistic polynomial-time algorithrd, a deterministic polynomial-time algorithé®, and
a uniformly random strindp. In the preparation procedur®, generates a random strih@nd
a vectoru in a latticeL(b,t) from b. Also, 8 generates a basB(b, t) of the latticeL(b, t) if
stringsb andt are given. Then, the probability thafb, t) is an instance ofi/?*"-uSVP andu
is its unique shortest vector such tmat’? < |jul| < n™"/3 is exponentially close to 1. Now let
F = (f,....f,) be a basis of the dual lattice ofb,t). We also denote by the uniform
distribution onP(F).

Cryptosystem 3.5.1(A05, [Ajt05]). All the participants agree with the security parameter
and share the algorithn#s, O and the random striniy.

Key Generation: We giveb to the procedur®, and then obtaihandu. Then, the private key
is u and the public key is.

Encryption: Leto € {0, 1} be an encrypted plaintext. & = 0, we choose from a Gaussian
distribution on then-dimensional Euclidean space given by the density functfd(x) =
explr |X||°). We then sey = Y(ys, ..., V) = zmodP(F). If o = 1, we choosg from
the uniform distributior,). These operations for real numbers are done with precision
2-"legn The ciphertexy = '(ya, ..., Yyn) is obtained by rounding with precision of %n,

i.e., we havdy, — yi| < 1/nfor everyi € {1,...,n}.
Decryption: We decrypt a received ciphertexto 0 if frc ((y, u)) < EWHUH and to 1 oth-

erwise, where is a constant given in4jt05]. This operation is also done with precision
2—nlogn_

Summarizing the results on A05, he mentioned the following theoremjiog]. Since
the ciphertexts of AO5 are rounded with precision g And use a compact representation of
lattices, the ciphertexts and the keys can be represent®fdgg n) bits. For the definition of
the underlying problem DA seeSection 2.2
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Theorem 3.5.2([Ajt05]). The cryptosysteA05 encrypts al-bit plaintext into an @nlog n)-
bit ciphertext with decryption error probability at mo&(n~"/3). The security oA05 is based
on the average case BIA’. The size of the public key and the private key (s10gn).

We show the multi-bit cryptosystem mbAO5 as follows. Letbe the length of the
unique non-zero shortest vectoy i.e., 2 = |jul. We generalized the standard deviation of
n-dimensional Gaussian distribution in encryption procedure for the sake of a discuss of a
pseudohomomorphism. We u@(x) = s exp(n||x/9?) instead of" in the original cryp-
tosystem. If we ses = 1, the security of our cryptosystem is based on the security of the
original one. We suppose thafn) = w( W) is a parameter to control a tradé-between
decryption errors and size of plaintexts anth 1s the precision of rounding in the encryp-
tion procedure as same as in the original. To guarantee the decryption errors, we suppose that
s> Va/n(n). Let a primep be the size of plaintext space such tpat n'/%/(4sy(n)). Note
thatp < 1/(4 Vasy(n)).

Cryptosystem 3.5.3(mbAO5). All the participants agree with the parameterands, and the
sizep of the plaintext space. They also share the algorit&® and the random string.

Key Generation: This procedure is the same as that of AO5 except that we add aniindex
chosen uniformly at random frorfi : (f;,u) # 0 modp} to the public key ank =
(fi,,u) mod p to the private key. Thus, the private key is k) and the public key is
(t,iq).

Encryption: Leto €{0,..., p— 1} be a plaintext. We choosfrom the Gaussian distribution
v{. Then, the ciphertexy is obtained by rounding = <f,, + zmod#(F) with the
precision of In, i.e., we havdy; — yi| < 1/nfor everyi € {1,...,n}.

Decryption: We decrypt a received ciphertexinto [p(y, u) k-* mod p, wherek is the in-
verse ofk in Z,,.

Before evaluating the performance of mbAO5 precisely, we give the summary of the results
as follows.

Theorem 3.5.4.The cryptosystembAO5encrypts glog p(n) |-bit plaintext into an @nlog n)-
bit ciphertext with decryption error probability at maoat(”™) | where p< n'/8/(4sp(n)) and
s > Va/n(n). The security ombAO5is based on the security &05. The size of the public
key is the same as that of the original one. The size of the private Kegis| plus that of the
original one.

Settingn(n) = log n, we obtain arD(log n)-bit cryptosystem with negligible decryption errors.
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Finally, we discuss the pseudohomomorphic property of mbA05. We consider a modified
version mbAO5 of our multi-bit mbAO5 is the same cryptosystem as mbAO5 except that the
precision is 2"°9" for its ciphertexts instead of/h. This modified version mbAGSactually
has the pseudohomomorphism. We denot&fyhe encryption function of mbAOSuch that
we use the Gaussian distribution with standard deviatiornthe encryption procedure.

Theorem 3.5.5(pseudohomomorphism).et p be a prime and be an integer such thaip <
n'/®/(4n(n)) for any constant r> 0. We can decrypt the sum etiphertextsy.’; EX (o) mod
P(F) into 3, o mod p with decryption error probability at mog“(™_ Moreover, if there
exist two sequences of plaintexts,, ..., o) and (o7, ...,07), and a polynomial-time algo-
rithm that distinguishes betweeq, EX (o) modP(F) and 3, EL (o) modP(F) with its
public key, then there exists a polynomial-time algorithm that sdbA&'swith non-negligible
probability.

In what follows, we demonstrate the performance of mbA05 and mbé@%ed in the above
theorems.

3.5.2 Decryption Errors of mbAO5
We now give the decryption errors of our multi-bit version mbAO5.
Theorem 3.5.6.The probability of the decryption errors mbA05is at most2-27 ™)

Proof. Lety be a ciphertext of a plaintext. It is enough to show

_ ko 1 2
Pr|frc((y,u) - —) > —| < 27,
[ (y p)” 2p

Sincep < 1/(4Vasy(n)) and Vasy(n) > A,

_ ko 1
Pr[frc ((y, u) — F) > ﬁ)]

IA

Pr[frc ((37, uy — k%) > 2Vasy(n)

IA

Pr[frc ((37, uy — k%) > Vasp(n) + A

By the rounding precision of/h, we also havé((y — y), u)| < A. Therefore, we have

< Pr[frc ((y, u) — k%) > \//_15;7(n)]

< Pr [frc (z,u)) > \/an(n)] + 2790,

Pr[frc (()7, uy — kipf) > Vasp(n) + A

(Inthe last inequality, we use the fact tlyat z+%fi6 mod#(F) andk = (f;,, u) mod p.) Notice
that the fractional part ofz, u) then has a folded Gaussian distributiéy;,. (Recall that its
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density function?,, is of the form¥,(l) = >z (1/0) exp(—n((l - k)/o-)z).) By Lemma 2.3.1
we have

ZNF:(Srn) |fre ((z.w) > Vasy(n)] < exp(-mr?(n)).

1
()

This completes the proof. O

3.5.3 Security of mbA05

The security of our cryptosystem mbAO5 can be also proven by a similar technique to
MbADGGH.

Theorem 3.5.7.If there exist plaintexts, o, € {0, ..., p—1} and a polynomial-time algorithm
that distinguishes between the ciphertextofindo-, in mbAO5with its public key, there exists
a polynomial-time algorithm that distinguishes between the ciphertextsuod 1 in AO5 with
its public key.

3.5.4 Pseudohomomorphism of mbAQOS5

Decryption Errors for Sum of Ciphertexts. Recall that we adopt the precision of"®9"
for the ciphertexts in mbAU5 We denote byES the encryption function of mbAOSuch that
we use the Gaussian distribution with standard deviagiornthe encryption procedure.

Theorem 3.5.8(mbAO0S). Letn(n) = w(+/logn). Also let p be a prime and be an integer
such thatkp < n'/®/(4n(n)) for any constant r> 0. We can decrypt the sum efciphertexts
¥ El(o7) modP(F) into Y, o mod p with decryption error probability at mog <),

Proof. Since the precision is 29" we can considerY!  E(ci) modP(F) as
Emﬁ(ziﬁlm mod p). Replacings and p by +k and «p respectively, we can evaluate the
decryption errors with the same argument as the prooflaforem 3.5.6by the fact that
Ky =y, u)| < na2-"logn = 2-Q) O

Security for Sum of Ciphertexts. CombiningLemma 3.2.13vith the security proof of A05
in [Ajt05], we guarantee the security of the sum of ciphertexts in mbAR®Bte that we can
regardy, EX (o) modP(W) as E,f(zikzlm mod p) in mbAOS by replacing the precision
1/n of the ciphertexts to 209",

Theorem 3.5.9.If there exist two sequences of plaintets,,...,o,) and (o7,...,07%)
and a polynomial-time algorithmD; that distinguishes betwee(}l_; EL (o), pk) and
(i, EL(o7), pK), then there exists a probabilistic polynomial-time algoritt#inthat solves
DA'.
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3.6 Concluding Remarks

We have developed a universal technique for constructing multi-bit versions of lattice-based
cryptosystems using periodic Gaussian distributions and revealed their pseudohomomorphism.
In particular, we have showed the details of the multi-bit version of the improved Ajtai-Dwork
cryptosystem irBection 3.2

Although our technique achieved only logarithmic improvements on the length of plain-
texts, we also obtained precise evaluation of the tratieh®tween decryption errors and the
hardness of underlying lattice problems in the single-bit cryptosystems. We believe that our
evaluation is useful for further improvements of such single-bit cryptosystems.

Another direction of research on lattice-based cryptosystems is to find interesting crypto-
graphic applications by their algebraic properties such as the pseudohomomorphism. Number-
theoretic cryptosystems can provide a number of applications due to their algebraic structures,
whereas lattice-based ones have few applications currently. For demonstration of the crypto-
graphic advantages of lattice problems, it is important to develop the algebraic properties and
their applications such a&KO09].
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Chapter 4

A Modified RegeVv’05 Cryptosystem,
Proofs of Knowledge on Its Secret Key,
and Signature Schemes

4.1 Introduction

Summary. We propose a modified Regev’05 cryptosystem and introduce a proof of knowl-
edge on its secret key in the common reference string (CRS) model. We consider the relation
between the private key and the public key as that between the message and the codeword with
the error in coding theory. To construct a proof of knowledge, we modify generation of the
error. This modification admits a prover to prove the knowledge of the error and the message
based on Sterrgte9§. Thus, we obtain a proof of knowledge on a secret key of our cryptosys-
tem. We also obtain a signature scheme via the Fiat-Shamir transforma886 AABNO2].

Related Results. There already exist public-key identification schemes based on lattice and
coding problems. In 1989, Shamir showed an identification scheme based on permuted ker-
nel problem Eha89. Stern proposed public-key identification based on syndrome decoding
problem in 1996 $te94. Micciancio and Vadhan introduced a zero-knowledge proof wiih e

cient prover for GapCVPand discussed public-key identification schemd¥(03]. Recently,
Hayashi and Tada showed public-key identification schemes based on binary non-negative ex-
act length vector problem (or integer subset sum proble#i)0p]. Unfortunately, it is un-

known whether their public keys can be used as a public key of cryptosystems or not. We stress
that in our identification schemes, the information for identification is indeed a public key of
cryptosystems.
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Why can we not apply the MV protocol to RO5? Before description of our idea, we briefly
review the key generation of RO5 and explain why the same approach with the Micciancio-
Vadhan protocoll{IV03] fails for our goal. (We abbreviate it to “the MV protocol”.)

In ROS, the secret key se Zg and the publickey ig = [ay, ..., an] € Zg"andb = 'As+e,
wheree € Zg' and each coordinate @fis close to 0. From a coding-theoretical view, we can
regard'A as a generator matris,as a message, aedis an error. Remark that the lengtheof
is short. Hence, one would think we can apply the MV protocol to proofs of knowledge for a
secret keys. However, we cannot apply it in a naive way. We explain more details.

We first review the intuition which is used in the MV protocol. ($&etocol 5.2.Xfor more
details.) Let B,y,t) be an instance of GapC\/P Let By (c, r) be anm-dimensional hyperball
whose center is and radius ig. In their protocol, the prover chooses a randomclaind a
random vector from By (0, yt/2). The prover compute® = cy + r modB and sendsn to
the verifier. The verifier sends a challenge dib the prover. Note that ifR,y,t) is a YES
instance then the ratio between the volumeR(0, yt/2) modB) N (B(Yy, yt/2) modB) and
that of B(0, yt/2) is at least Lpoly(n). If m € (Bn(0, yt/2) modB) N (By(Yy,yt/2) modB) the
prover can flip a bit. The prover sends the proof thatis chosen fronB,,(cy, yt/2). Note that
if (B,y,t) is a NO instance therB(,(0, yt/2) modB) N (Bn(y, yt/2) modB) = 0. Therefore the
prover can not flip a bit after a reception of the challenge bit.

Next, we consider applying their protocol to the Regev’'05 cryptosystem, i.e., a proof of
knowledge that, on inpu#, b), the prover knows such thab = 'As + e, wheree € B(0, t).?

Note that a linear code i&-module inZg' and a lattice iZ-module inR™. Therefore, instead of
reducing moduld, we multiply a parity-check matrii of 'A to the vector irzg'. Suppose that
Bm(0, yt/2) andB(b, yt/2) do not intersect. Unfortunately, we cannot ensurektizy(0, yt/2)
andHBr(b, yt/2) do not intersect because the dimensio &g is m—n < m. On such NO
instance A, b), the prover can cheat the verifier on which hyperball he clno$em. Hence

the soundness of the protocol fails. Thus, we cannot apply their protocol to the Regev’'05
cryptosystem in a straightforward way.

Main Idea. As seen in the above paragraphs, we cannot apply the protdd®3] to the
Regev’05 cryptosystem straightforwardly. Let us reconsider multiplying a parity-check matrix
H. Lets € Zg be a private key and lef\( b) be a public key, wherb = 'As + e. Multiplying a

1(B,y,t) is a YES instance if there exists € Z" such that|Bw — y|| < t. It is a NO instance if for any vector
w e Z", ||Bw —y|| > yt. Although they consider only full-rank lattices iMpM03], we consider not only full-rank
lattices. That is, an instance of GapCVébnsists ofB, which is a basis of a lattice whose ranknisy € R™,

y>1
2 We abuse the notatioB,(-, -).
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parity-check matribH to the equatiom = 'As + e, we obtain thatb = He. The prover should
prove the knowledge adthat satisfies the equation and each coordinagain certain range.
The dfficulty to construct the protocol is to combine protocols that provécsency of the
equation and lying in the range.

Then, we modify a public key as follows: The secret keg &Z; ands’ € {0, 1}™, whose
Hamming weight ism,. The public key isA € Z{™ andE e Zg"™ andb = 'As + ES. In
this case, by multiplying a parity-check mattk we have thaHb = HES'. Translating a
matrix HE as a parity-check matrix, we have an instane& (Hb, m,) and a witness' of
Syndrome Decoding Problem (SDP%ince Stern proposed a proof of knowledge for SDP in
1996 [Ste9§, we adopt it to prove knowledge of secret ky

The proof of knowledge for SDP needs a statistically-hiding and computationally-binding
commitment scheme. FortunatelyAfis chosen randomly then the functifn: {0, 1}™ — Zj
m — Am is a collision-resistant function based on the approximation version of 8}{&6p,
GGH96 CN97, Mic04a MRO0O4]. Thus we employ that function to develop a statistically-
hiding and computationally-binding string commitment scheme. Our construction of a string
commitment is more straightforward than Damgard, Pedersen, and PfizDaR®] DPP9§
and Halevi and MicalilHM96], which used the universal hash functions.

We also show the security of the modified RO5, mR05. Unfortunately, we need a stronger
assumption than the original one. The stronger assumption is the worst-case hardness of certain
learning problem, which is based on well-known problem Learning With Error (LWE).

Organization. The rest of this chapter is organized as follows. We briefly note basic notions
and notations irsection 4.2 We describe the Regev’05 cryptosystem and our modified crypto-

system inSection 4.3 Finally, we give our main results, a proof of knowledge on a secret key,

in Section 4.4

4.2 Preliminaries

For integersmy > m, > 0, we define Sgtm, = {S € {0,1}™ | wy(S) = mp}. For any
s € Zg, we defineAs obtained as follows: (1) Choose a random veeter Zg'. (2) Choose a
random elemeng € Z, according to?,. (3) Outputs &,(a,s) + €). For anys € Zg' and any
S € Sety,.m, We defineAsy as the distribution o] x Zg" x Z, obtained as follows: (1) Choose

a random vectom € Zg. (2) Choose a random vectere Zq"* according to‘?ﬁl’;‘;ﬁz. (3) Set

3 Syndrome Decoding Problem: Given inptit,fy, m), whereH € Z{"", y € 23X m > 0, findx € Z} such
thatHx = y and Hamming weight of is exactlym.
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b:=(as) +(e<s) and outputg e, b). We also defind)’ as the distribution ofZg x Zgh X Zyq
obtained as follows: (1) Choose a random veetarZg'. (2) Choose a random vecter Zg"
according toPM) . (3) Choose a random elements Zq and output 4, e, u).

We consider the following learning problems.

Definition 4.2.1(Learning With Errors, LWEg,). Given samples from, finds.
Definition 4.2.2(Learning With Known Errors, LWKEy,). Given samples frondy, find s.

We note that if there exists an adversafythat solves LWEy with non-negligible proba-
bility then there exists an adversa# that solves LWKE g, with non-negligible probability.
If A needsk = poly(n) samples, thenA’ takesk samples &, e, b;) from Asy. A’ inputs

,,,,,

.....

4.2.1 String Commitment

We explain the notation for commitment schemes in the common reference string (CRS) model.
Assume that there exists a trusted third party (TTP). Let Gerv) be an indexed function
which maps a pair of a message string and a random string to a commitment string. First, TTP
on input T outputs a random strir@ which is the CRS and the index of the commitment func-
tion. To commit to a strings, the sender chooses a random stringomputes = Comy(s; r),

and sends to the receiver. To reveal commitmentthe sender sendsandr to the receiver.

The receiver accepts@= Comy(s; r) or rejects otherwise.

Definition 4.2.3. We say a string commitment scheme Ggm-) is statistically hiding and
computationally binding if it has the following properties:

Statistical Hiding: For any two stringsands, the statistical distance betweenComy(s; r))
and @, Comy(s'; r)) is negligible, where, r,r” are random and independent.

Computational Binding: For any probabilistic polynomial-time machit, if ais randomly
chosen by TTP, then the probability that, given an inpuiA outputs & r) and §,r’)
such that Con(s;r) = Comy(s’; r’) is negligible.

4.2.2 Subset-Sum Hash Functions and a String Commitment Scheme

As explained irSection 4..ve need a string commitment scheme to construct a proof of knowl-
edge of a secret key. We first argue the family of subset-sum hash functions and the string
commitment scheme.
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Let n be a security parameter (or a dimension of underlying lattice problems). For a prime
q = g(n) = n"°® and an integem = m(n) > nlogq(n), we define a family of hash functions,
Ham = {fa {0, 1™ — 77 | A € Zg o™}, wherefa(x) = Ax modg(n).

Originally, Ajtai [Ajt96a] showedH,,n is a family of one-way functions under the assump-
tion that SVP with some polynomial approximation factor is hard in the worst case for suitably
choserg(n) andm(n). It is known thatH,, is indeed a family of collision-resistant hash func-
tions for suitably choseq andm by Goldreich, Goldwasser, and HalesGH94, Cai and
Nerurkar [CN97] and Micciancio MicO4g. Recently, Micciancio and Regev showgf,, is
a family of collision-resistant hash functions under the assumptiorsgV&hard in the worst
case MR0O4].

We construct a statistically-hiding and computationally-binding string commitment scheme
based on the above hash functions. It is well known that if there exists a collision-resistant hash
function then there exists a statistically hiding and computationally binding string commitment
scheme DPP97 DPP98 HM96]. Their construction used universal hash functions for the sta-
tistically hiding property. However, our construction do not use it, becausasfsuficiently
large and a plaintexd is randomizedAs is distributed statistically close to the uniform distri-
bution. To prove the statistically-hiding property, we @&aim 4.2.5below in [Reg03j.

We describe how to achieve a string commitment scheme in the CRS model. We first
split the domain{0, 1}™ into two domain{0, 1}™? x {0, 1}"™2. The first domain is used for
randomization. The second domain is for message. We defing Bpmy:= Ax, wherex =

Y(rose s Py2> Sto v vs Sy2)y T = 1.0 . Toy2, ANAS = S) ... Syy2.

Lemma 4.2.4.For a prime gq= q(n) = n"°® and an integer m= m(n) > 10nlogq, if Hqm is
collision resistant and a trusted third party gives a random ma#rix Zg*™, thenCom, is a
statistically hiding and computationally binding string commitment scheme in the CRS model.

Proof. The computationally-binding property immediately follows from the collision-resistant
property. Next, we consider the statistically-hiding property. Usitagm 4.2.5below, we have

that with probability exponentially close to 1 the statistical distance between the distribution
of (A, Comy(0™2; 1)) and that of A, u) is negligible inn, wherer andu are random variables
according to the uniform distribution d6, 1)™?2 andZg, respectively. Hence, for any two mes-
sagesm, m, € {0,1}™?, the statistical distance between the distributionAfGoma (my; r1))

and that of A, Coma (my; 1)) is negligible inn with probability exponentially close to 1, where

r, andr, are random variables according to the uniform distributiofOpm}™?2. This completes

the proof. |

Claim 4.2.5(Claim 5.3, Reg09). Let G be a finite Abelian group and letd clog|G|. For
c > 5, when choosing | elements,g. ., g uniformly from G the probability that the statisti-
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cal distance between the uniform distribution on G and the distribution given by the sums of
random subsets of,g . ., g, is more thar2/ |G| is at mostl/ |G|.

4.3 The Regev’'05 Cryptosystem and Its Modification

4.3.1 The Regev’05 Cryptosystem

Regev proposed a lattice-based cryptosystem in 2B@§(03. Although we briefly review the
RegeVv’'05 cryptosystem, RO5, 8ection 3.4we review it again.

Cryptosystem 4.3.1(R05, [Reg09). Let n be a security parameter (or a dimension of the
underlying lattice problem). Lej be a prime and be a parameter to define the variance of
Gaussian distribution such that) > 2+/n. Letmbe an integer at leastb¢ 1) logq.

Private Key: Chooses € Zg randomly.
Public Key: Chooseny,...,anm€ Zg randomly. Choose,, ..., e,according to the distribution

.....

Encryption: A plaintext iso € {0,1}. ChooseS cCg {1,...,m} randomly. The ciphertext is
(Zies 8,0 [0/2] + Yics bl)

Decryption: Let (a,b) € Zg x Z, be a received ciphertext. |lf — (a, s)|, < q/4 then decrypt to
0. Otherwise decrypt to 1.

The size of a public key and a private key &ennlogq) = O(nlog® q) andO(nlogq) =
O(nlogn) respectively. Ifay,...,anyis the CRS, this is the idea from Ajtal\[t05], the size of
a public key isO(mlogq) = O(nlog?q). We summarize the security and decryption errors of
RO5.

Theorem 4.3.2(Thereom 3.1, Lemma 4.4, and Lemma 5Re§09). Leta = a(n) be a real
number on(0, 1) and q= q(n) a prime such thatrq > 2+/n. For m> 5(n + 1) logq, if there
exists a polynomial time algorithm that distinguishes between encryptidemfl then there
exists a distinguisher that distinguishes betweeanl U(Zj x Z,) for a non-negligible fraction
of all possibles.

Next, assume there exists a distinguisher that distinguishefsom U(Zj x Z,) for a
non-negligible fraction of all possible Then, there exists anfient algorithm that solves
LWE, v, -

Finally, assume there exists ayfieient (possibly quantum) algorithm that solMe¥E . .
Then there exists anffieient quantum algorithm for solving the worst-caseSafPs ) and
SIVPs(/0)-
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Lemma 4.3.3(Lemma 5.1, Reg03 (Correctness))The decryption error probability is at most
2-0(1/(me?) | 2-0(n).

Remark 4.3.4. The reduction inTheorem 4.3.2s quantum. Therefore, the security of RO5
depends on the worst-case hardness of L \WEn the classical sense.

4.3.2 A Modified Regev’'05 Cryptosystem

We modify the Regev’05 cryptosystem to obtain a new cryptosystem mRO5.

Cryptosystem 4.3.5(mR05) Let n be a security parameter (or a dimension of the underlying
lattice problem). Let) be a prime andr be a parameter to define the variance of Gaussian
distribution such thatq > 2+/n. Lett, be a threshold such thatRy, . [lelg > t.]is negligible

inn (i.e.,t, = w(aglogn/my).) Letmbe an integer at least 10¢ 1) logq. Let my andm, be
integers such thaty, m, = poly(n) and(?;) is exponential im. Let Sef, m, = {S € {0,1}™ |
wx(S) = mp}. We need snmpt, < qto ensure the correctness of the cryptosystem.

Private Key: Chooses € Zj randomly. Choosg' € Set, m, randomly.

Public Key: Choosea,...,ay € Zg randomly andey, ..., &, according to the distribution
@(m)

a/mp’

mostt, in the sense of|,. Computee := Es’. Letb := '‘As+ec Zy. The public key is
(A,E,b). The secretkey is, s.

Encryption: A plaintext iso € {0,1}. ChooseS cCg {1,...,m} randomly. The ciphertext is
(ZieS a,0 Lq/ZJ + ZieS bl)

Decryption: Let(a,b) € Zg X Zq be areceived ciphertext. [l — (a, s)lq < q/4 then decrypt to
0. Otherwise decrypt to 1.

LetA =[&,...,an andE = [ey,..., e, ]. Check for anyi, &’s coordinates are at

For example, we sat = ©(n%), m= 10(n + 1) logq, @ = 1/n?, t, = n/logn, m; = m, and
m, = +/m. Note that, with such parameters, we have tmatt, < g.

The size of a public key and a private key @énnlogq + mynlogq) = O(n?log? q) and
O(nlogqg + mylogqg) = O(nlog? n) respectively. IfA andE are the CRSs the size of a public
key isO(mlogq) = O(nlog®q). Note that, from a coding-theoretical viel is a generator
matrix and we can compute a parity check mattizuch that, for ang € Zg, H'As=0¢ Zg ™.

First, we see the correctness of mR0O5.

Lemma 4.3.6(Correctness) There exist no decryption errors mR05
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Proof. Suppose thaig( b) is a valid ciphertexts of 0, i.e.a(b) = (3, ria, .24 riby) for some
r € {0, 1}™. We have

Ib—<(a s)ly =

ribi — (Zm] ria;, s)
=

m
>e
i=1

whereg is i-th coordinate ok = ES. Since we setdhmt, < g, we obtainb - (a, s)l; < q/4.

q

T i

ll
ey

re| < < mlalq < mn‘tta»

q q

Next we consider the case, p) is a valid ciphertexts of 1, i.e.a(b) = (X1, ria, /2] +
> rib) for somer € {0, 1}™. Similarly to the case of 0, we have

Ib—<(a,s)ly > 1a/2] — mmt, > g/4
and we can decrypt correctly. O

Combining Lemmasgt.3.8 4.3.9 and4.3.10below, we obtain the following theorem on
security of mRO05.

Theorem 4.3.7(Security) For m> 10(n+ 1) logq, if there exists a polynomial-time algorithm
P that distinguishes between encryptionsOadnd 1 with its public key, then there exists a
polynomial-time algorithniA that solved WKE ., in the worst case.

Lemma 4.3.8. For m > 5(n + 1)logq, if there exists a polynomial time algorith@ that
distinguishes between encryption®a@nd1 with its public key, then there exists a distinguisher
7> that distinguishes betweenAand U for a non-negligible fraction of all possibkeands'.

We omit the proof, because the proof is quite similar to the security proéteg(3.

Lemma 4.3.9(Average-case to Worst-caséyssume there exists a distinguistiethat distin-
guishes Ay from U’ for a non-negligible fraction of all possibkeands'. Then there exists an
algorithm 2 that for all s and s’ accepts with probability exponentially close X@n inputs
from Aj¢ and rejects with probability exponentially closelt@n inputs from U.

Proof. As similar to Regev’s proof Reg03, we prove the lemma based on the follow-
ing transformation. For any € Zg and any permutatiom € Sy, consider the function
fir © Zg X Zg" X Zgq — Zg X Zg" X Zq defined by

fix(a € b) = (a n(e), b+ (at)).

This function transforms the distributioRs into As.. ). Moreover, it transforms the distri-
butionU’ into itself.
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Next we consider a random statistical test. Assume thabhfarfraction of all possible
(s, 9), the acceptance probability & on inputs fromAsy and on inputs fronJ’ differ by
at leastn=%. We construct the distinguish&’ as follows. LetR denote the unknown input
distribution. (0) Repeat the followingf*** times. (1) Choose a vectbe Zg and a permutation
m € Sy, uniformly at random. (2) Estimatpg, the acceptance probability @ on f; .(R), by
caling® T = n?®=*! times. Letxg be the number of 1 in the outputs 6f. (3) Estimatepy,
the acceptance probability @ onU’, by calling®D T times. Letx, be the number of 1 in the
outputs ofD. (4) If [xy — gl /T > n~%/2 then stop and accept. Otherwise continue. (5) If the
procedure ends without accepting, stop and reject.

WhenRis U’, the probability thatpy — xy/T| > n™%/8 is exponentially small by the Ho-
effding bound. Sincd,(U’) = U’, the probability thaipy — Xz/T| > n"%/8 is exponentially
small. Therefore, the acceptance probability¥fis exponentially close to 0.

WhenRis Ass for somes, s'. In each of the iterations, we are considering the distribution
fix(Ass) = Asit(s) fOr some uniformly chosehandz. Hence, with probability exponentially
close to 1, in one of the®*! iterations, § + t,n(s)) is such that the acceptance probability
of O on inputs fromAs,: -y and on inputs fronJ’ difter by at leash™®. In this case, from
the Hodfding bound, the probability thapy — xy/T| = n™%/8 and|pr — Xg/T| = N"%2/8 is
exponentially small. Hencg) accepts with probability exponentially close to 1. O

Lemma 4.3.10(Decision to Search)Let n> 1 be some integer and g 2 be a prime. Assume
there exists an algorithif that for all s, s accepts with probability exponentially closelton
inputs from Ay and rejects with probability exponentially closet@n inputs from U. Then,
there exists an algorithr®’ that, given samples fromy4 for somes, outputsswith probability
exponentially close ta.

Proof. We only show how?)’ find the first coordinate &'s, € Z,. For anyk € Zg, consider the
following transformation. Given a tupley(e, b) we output the tupleg(+ (1,0, ..., 0),e b + Ik)
wherel € Z, is chosen uniformly at random. This random transformation téakesto itself.
Moreover, ifk = s; then this transformation also taklsy into itself. Finally, ifk # s; then it
transformsAgsy to U’. Therefore, using), we can test whethde = s; or not. Since there are
only g < poly(n) possibilities fors,, we can try all of them. O

Remark 4.3.11.The hardness of the worst case of LWKE implies the hardness of the worst
case of LWEy, . Note that it is unknown if the converse statement holds. We also note
that, fromTheorem 4.3.2there exists a quantum reduction from LWE to SVRs,,, and
SIVPs(/0)-
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4.4 Proofs of Knowledge on Its Secret Key

Recall that we can considéA as a generator matrix from a coding-theoretical view and a
parity-check matrixH is easily computed. Informally, if Alice wants to prove that she has a
secret key corresponding to a public Keyit is suficient that she proves that she has an error
key s such thaHES' = Hb.

Definition 4.4.1 (RelationRyres). Let (A, E,b) be a public key of mRO5H a parity-check
matrix of A, sa vector inZg, ands’ a vector inZq*. We say that inputA, H, E, b) and witness
(s,9) are iNnRyrosif S’ € Sety, m,, As+ ES = b, andHES' = Hb.

Next, we describe the protocol for a proof of knowledge for a secret key, which is mainly
based on a proof of knowledge for SDP by Ste3teP4g.

Protocol 4.4.2(Protocol PSK) Let P andV be a prover and a verifier respectively. The CRS
is A,E. The common input i®. The auxiliary inputs to the prover ageands such that
b ='As+ ES. Let Com¢;-) = Coma(:; ).

Step P1 Choose a random permutatiarfor {1,...,m} and a random vector € Zg*. Com-
putec; = Com@r,HEYy;ry), ¢, = Com(y);r;) andcs = Com@(y + S);r3). Send
C1,Cr, C3tO V.

Step V1 V sends a random challenge bitr {1, 2, 3} to P.

Step P21If 6 = 1, P opensc, andc; (i.e., send, y, ry, andr, to V). If § = 2, P opensc; andcs
(i.e., sends,y + S, rp andrz to V). If 6§ = 3, P opensc, andcs (i.e., sends(s), #(y), r2,
andrz toV).

Step V2 If § = 1, receivedr; Y, f1, andr3, check the commitments andc, were correct (i.e.,
c: = Com@r, HEY; F1) andc, = Com@(y);T,)). If § = 2, receivedr] X, f1, andr3, check
that the commitments,; andc; were correct (i.e.¢; = Com@r, HEX — Hb; ;) andc; =
Comr(X); F3)). If 6 = 3, receivedky, X,, ', andrz, check that the commitments and
c3 were correct (i.e.g, = Com(Xy; Fo) andcs = ComXy + Xo; 3)) and thatwy (Xo) = mp.

Theorem 4.4.3.An interactive protoco(P, V) is a proof of knowledge system with knowledge
error 2/3 for Rnros. Moreover, the protoco(P, V) is a statistical zero-knowledge argument
for Rmros in CRS model under the assumption that the worst cab®WE iz, and SVPy, is
hard.

Proof of completenesaNe omit the proof since it is evident. O

We useLemma 4.4.4elow in [Ste9§ in the proof of knowledge error.
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Lemma 4.4.4(Theorem 1 and Lemma 1S${e96§). Assume that some probabilistic polynomial-
time adversary Pis accepted with probability at leag2/3)" + €, € > 0, after playing the
identification protocol r times. Then there exists a polynomial-time probabilistic machine K
such that outputs the witnessfrom the common input or else finds collisions for the hash
function with probability larger thar?/10.

The idea ofLemma 4.4.4s follows: Assume thaP* can output response to alls chal-
lenges correctly. LelP’s response t&’s challenge 1 bey, , 11, andri,. Let P's response to
V'’s challenge 2 berz, X, 1, andrz 3. Finally, letP’s response t&’s challenge 3 bé&;, X,, '3
andry 3. Since all response are correct, we obtain that

¢ = Com(ry, HEY; F11) = Com(t,, HEX — Hb; F5 )
C; = Com((y); F12) = Comy; T32)
cz = Com(ra(X); F23) = ComKy + Xz; 33)

If there exists a distinct pair in the inputs of commitment, we find a collision. Then, we assume
there exists no distinct pair iR*’s responses. Sinde* is acceptedwy(X,) = m,. Fromc,'s
equationr; = 7. Combinings; = 7, andcg’s equations, we obtaiR = 7,%(%1) + 7,%(%y).
Fromc,'s equation, we have thgt= 7,'(X,). Therefore, combining the above argument and
ci's equation, we obtaiflb = HE(X — §) = HE®,*(%,) and a witnes&,*(X,). Thus, we obtain

a collision or a witness using.

Proof of knowledge error witR/3. Assume that some probabilistic polynomial-time adver-
sary P* in Lemma 4.4.4 Using Lemma 4.4.4we obtainK in the above. In Stern’s proof,

he consider binary linear codes. Although we play the protocgtamy linear codes, we can
apply Stern’s proof tag-ary codes. Note that, under the assumption that the worst case of
SVPsy is hard, finding collision is hardR04]. Therefore if assume that S¥p) is hard in

the worst case, we obtain a knowledge extragtor O

Proof of zero knowledgeWe construct the simulator as follows.

Step P1 ChooseA € {1,2,3} randomly. Choose a permutatiana vectory € Zg*, a vector
S € Sety,m, uniformly at random.

1. A = 1. Computec; = Com@r,HE(y + S) — Hb;ry), ¢, = Com(y);r»), and
cz = Com(y + S); rz). Send<, ¢, andcs to V*.

2. A = 2: Computec; = Comr, HEY; r1), ¢, = Com(r(y);r,), andcz = Comr(y +
S); r3). Send<, ¢,, andcs to V™.
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3. A = 3: Computex € Zg* such thatHEx = HEy + Hb. Computec; =
Comr, HEy; ry), ¢, = Com(y);rz), andcs = Com@r(X);rs). Sendscy, c,, and
Cz to V*.

Step V1 Receive a challengge {1, 2, 3}.
Step P2 If A = ¢ then outputL and halt. Else,

1. (A,60) =(1,2): Sendr'=n, X =nr(y +S), F1 = rq, andrz = ry3 to V*.
2. (A,6) = (1,3): SendXy = n(y), X2 = n(S), 2 = 1y, andrz = rz to V*.
3. (A,0) =(2,1): Sendr=n,§y =y, 1 =rg, andr = rp to V*.

4. (A,6) = (2,3): SendXy = n(y), Xo = n(S), 2 = 1, andrz = rz to V*.
5. (A,6) =(3,1): Sendr'=n,y =y, 1 =ry, andr; = ry to V*.

6. (A,6) = (3,2): Sendr™= n, X = 77 1(X), F1 = ry, andrz = r3 to V*.

Output the transcript and halt.

Since Com is statistically hiding, the simulator’s outputs when the simulator did not autput
is statistically close to the real transcript. O

4.5 Signature Schemes

Background. In 1986, Fiat and Shamir proposed zero-knowledge proof of knowledge for
the quadratic residue om = pg whose factorization is unknown. Firstly, Pointcheval and
Stern PS9§ showed the securities of some signature schemes, the Fiat-Shamir signature
and the ElGamal signature, in the random oracle model. Along this direction, Ohta and
Okamoto P0O9] proved that a signature scheme from honest-verifier public-coin perfect zero-
knowledge protocol via the Fiat-Shamir transformation is polynomially secure against chosen-
message attacks in the random oracle model. Recently, Abdalla, An, Bellare, and Namprempre
proved that a signature scheme from a polynomially-secure identification scheme via the Fiat-
Shamir transformation is polynomially secure in the above seh&8IN02].

However, their proofs do not imply the security in real world. Indeed, Goldwasser and
Tauman Kalai GTKO3] showed that existence of a signature scheme, obtained from a secure
identification scheme via the Fiat-Shamir transformation, which is not secure in real world
though secure in the random oracle model.

45.1 The Fiat-Shamir Transformation

We summary results ilHABNO2]. We first review definitions and notations iARABNO2].
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Canonical identification schemes. Let 7D = (K, P, V, ¢) be an identification schemes; where
K is the key generation algorithm which on inpute N outputs 6k, pk), P is the prover
algorithm taking inpusk, V is the verifier algorithm taking inpytk, andc is a function of

n indicating the length of the verifier's challenge. We s& is a canonical identification
schemes if it is a public-coin 3-round protocol. $agure 4.5.1for details.

Prover Verifier
Input: sk Input: pk
Cmt .
Ch «g {0, 1}
ch r{0, 1)
Rsp

Dec < V(pk, (Cmt, Ch, Rsp))

Figure 4.1:A canonical identification protocol.

Next, we define the security of an identification scheme. L& be a randomized tran-
script generation oracle which takes no inputs and returns a random transcript of an “honest”
execution:

Oracle TR, 1n:
Choose a random tapeof P
Cmt « P(sk;r); Ch «g {0, 1}%"; Rsp « P(sk, (Cmt, Ch); r);
Return Cmt, Ch, Rsp)

Definition 4.5.1(Definition 2.1, AABNO2]). Let D = (K, P, V, ¢) be an identification scheme,
and let7 be an impersonatost be its state, and be the security parameter. Define the
advantage of as

Adv'y P4(n) = Pr[Expyy P4(n) = 1],

where the experiment in question is

Expi]r;f}pa(n):
(pk, sk) < K(1"): (st, Cmt) « 77 Rocsrr (pk, 1"): Ch «g {0, 1}

Rsp « I(st,Ch); Dec « V(pk, (Cmt, Ch, Rsp)); ReturnDec.

We say thatZD is polynomially-secure against impersonation under passive attacks if

Advi;;)‘f}pa(-) is negligible for every probabilistic polgj-time impersonatoy .
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Signature Schemes. Let DS = (K, S, V1, c) be a digital signature scheme; whe€es the

key generation algorithm which on inpate N outputs ék, pk), S is the signing algorithm
taking inputsk and a messagd < {0, 1}* and return a signatuke for M, VT is the verification
algorithm taking inputpk, a messagéM, and a signature- for M and returning a boolean
decision. The signing and verifying algorithms have oracle access to a fukttido, 1}* —

{0, 1}°™ which is the random oracle. The security of a signature scheme is defined as follows:

Definition 4.5.2 (Definition 2.2, AABNO02]). Let DS = (K, S, Vf,c) be a digital signature
scheme, lef be a forger andh € N the security parameter. Define the experiment

Exp;ﬂé;ma(n):
H g {f : {0,1}* — {0, 1}9"};
(pk, sk) — K(1"); (M, o) — FS«OHO(1M pk); Dec « VI (pk, (M, o))

If M was previously queried 8% () then return O else retuiDec.

Define the advantage &f as

Advfzr)gé z () = Pr[Exprr)g; z () = 1].

We sayDsS is polynomially-secure against chosen-message attaekis isegligible for every
probabilistic polyf)-time forgers .

The Fiat-Shamir Transformation. The idea of transformation is replacing a public cGim
by the functionH. We note formal construction.

Construction 4.5.3. Let 7D = (K, P,V, c) be a canonical identification scheme. We associate

to these a digital signature schem = (K, S, VT, ¢). It has the same key generation algorithm

as the identification scheme, and the output length of the hash function equals to the challenge
length of the identification scheme. (Let : {0,1)* — {0,1}“V be a hash function.) The
signing and verifying algorithms are defined as follows:

Algorithm SH(sk, M)
Choose a random tapeof P;
Cmt « P(sk;r); Ch « H(Cmt||M); Rsp « P(sk, (Cmt, Ch);r);
Return Cmt, Rsp)

Algorithm VfH(pk, M, o)
Parser as Cmt, Ch);
Ch « H(Cmt||M); Dec « V(pk, (Cmt, Ch, Rsp));
ReturnDec
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Finally, we review main theorem oAJABNO2]. In [AABNOZ2] they show the generalized
Fiat-Shamir transformation and the security of obtained signature scheme in the random oracle
model. Our strategy is using the basic Fiat-Shamir transformation. Thus, we quote only their
theorem considering the basic transformation.

Theorem 4.5.4(Therem 3.3, AABNO2]). Let 7D = (K, P,V,c) be a non-trivial and canon-

ical identification scheme. LeDS = (K, S, VT, c) be the associated signature scheme as per
Construction4.5.3 ThenDS is polynomially-secure against chosen-message attacks in the
random oracle model if and only ifD is polynomially-secure against impersonation under
passive attacks.

4.5.2 Concrete Signature Scheme

We first parallelizeProtocol 4.4.2and obtain a canonical identification scheme.

Protocol 4.5.5(Identification Scheme)Let P andV be a prover and a verifier respectively.
The CRS isA, E. The common input i®. The auxiliary inputs to the prover asaands such
thatb = 'As + ES andwy(S) = mp. Let Comg;-) = Coma(-;-). This protocol is obtained by
parallelizing theProtocol 4.4.2h times.

Step P1 Choosen random permutations; for {1,...,m} andn random vectory; € Zg".
Computeci; = Com(i, HEY;; ri1), Ci2 = Comri(y); ri2) andci 3 = Comri(y; +S); Ii.3)-

Step V1 V sends: random challenge bitSh := 64]|... |6, €r {1, 2, 3}" to P.

Step P2 ParseCh asdy||...|l6, € {1, 2, 3}".

1. If 6 = 1, setRsp; := (71, Yi, li.1, li.2)-
2. 1f 6i = 2, setRsp; := (m;,Yi + S, li1,i3)
3. If §; = 3, setRsp, := (mi(S), mi(Yi), iz, Fi.3)-

1. If 6; = 1, receivedRsp; = (7, Vi, i1, fi2), check the commitments; andc;, were
correct (i.e.,ci; = Com@, HEV;; 1) andc, = Comri(Vi); fi2)). If correct, set
Dec; := 1. OtherwiseDec; := 0.

2. If 6; = 2, receivedRsp; = (7, %, i1, i 3), check that the commitments; andc; 3
were correct (i.e.¢i; = Comr;, HEX; — Hb;Ti;) andciz = Com(ri(X);fi3)). If
correct, seDec; := 1. OtherwiseDec; := 0.
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3. If 6; = 3, receivedRrsp; = (X1, Xi, fi2, i3), check that the commitments, and
Ci3 were correct and the weight of witness is correct (cg.,= Com(; 1; fi») and
Ciz = ComKi1 + Xi2; fiz)) and thatwy (X 2) = mp.

If all Dec; is 1 then seDec := 1. OtherwiseDec := 0. OutputDec.

Applying the Fiat-Shamir transformation Rrotocol 4.5.5we obtain the following signature
scheme.

Signature Scheme 4.5.6Let P andV be a prover and a verifier respectively. The CRS is
A,E. LetH : {0,1} — {0,1}" be a random oracle. This protocol is obtained by applying the
Fiat-Shamir transformation.

Key Generation: Same as that of mbRO5 (See Cryptosystef5. The secret key iss(s).
The public key is A, E, b).

Signing: Let a message bM e {0,1}*. First, computeCmt as Step P1 irfProtocol 4.5.5
Secondly, query to the random orat¢leand obtainCh := H(Cmt||M). Finally, compute
Rsp as Step P2 iProtocol 4.5.5The signature is- := (Cmt, Rsp).

Verifying: The input is the public keyA, E, b), the messag#l, and the signature. First,
parseo as Cmt, Rsp). Secondly, query to the random oradieand obtainCh :=
H(Cmt||M). Finally, decide accept or reject as Step VPmotocol 4.5.5

Let us show the security of the underlying identification sch@mocol 4.5.5

Lemma 4.5.7. Assume that WKE s, and SVPs, is hard in the worst case. Then, the un-
derlying identification schemérotocol 4.5.5 is polynomially-secure against impersonation
under passive attacks.

Proof. The underlying identification schemierotocol 4.5.5is obtained by parallelizingro-
tocol 4.4.2 We show if there exists an impersonak®rwhich can impersonatérotocol 4.5.5
with non-negligible probabilitg, then there exists an adversafiywhich can obtain the witness
S for (A, E, b) usingP*.

As in Lemma 4.4.4 A finds a collision or obtain the witness for the common input
(A, E, b) with probability larger thare®/10. FromTheorem 4.3.7if A exists then an adversary
A’ such that solves LWKJ, in the worst case. O

CombiningTheorem 4.5.4andLemma 4.5.below, we obtain the following theorem.

Theorem 4.5.8.Assume thatWKE s, andSVPs, is hard in the worst case. Then, the above
signature schemet}(5.9 is polynomially-secure against chosen-message attacks in the random
oracle model.
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We remark that if we use a random oracle as hash function for string commitment, we can omit
the assumption that S\§p, is hard in the worst case.

4.6 Concluding Remarks

In this chapter, we have proposed a modified Regev’05 cryptosystem (mRO05) and introduced
a proof of knowledge on its secret key. We stress that our signature scheme is based on the
worst-case assumption.

At the end, we list up a few open problems: (1) A proof of knowledge on a secret key of the
original Regev’05 cryptosystem (R05); mR05 needs stronger assumption than one which R05
needs. (2) Relation between LWE and LWKE; we have failed to show a reduction from LWE
to LWKE. (3) Zero knowledge on coding problems; As see®éattion 4.1the MV protocol
can not apply to coding problems. Thus, we need a direct protocol for coding problems.
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Chapter 5

Proofs of Plaintext Knowledge for
the Regev’04 and Regev’'05 Cryptosystems

5.1 Introduction

Proof of Plaintext Knowledge. Given an instance of a public-key cryptosystem with pub-

lic key pk, a proof of plaintext knowledge (PPK) allows a prover to prove knowledge of the
plaintextm of ciphertextc € Ey(m) to a verifier. If both the prover and the verifier are on-
line, IND-CPA public-key cryptosystems with PPK protocol achieves interactive IND-CCA1
security [GHY85, Gol0]]. It was known that icient proofs of plaintext knowledge for the
number-theoretic public-key cryptosystems, such that Rabin, RSA, ElGamal, and etc., us-
ing zero-knowledge public-coin proofs of knowledge protocols with 3 rounds (knovsiz as
protocol). However, ficient proofs of plaintext knowledge for the lattice-based cryptosystems
were unknown except that iGKO05|.

Summary of Our Results. We construct PPK protocols for slightly modified versions of the
Regev’'04 cryptosystem (pR04) and the Regev’05 cryptosystem (pR0O5) based on the protocol
in [GKOY].

We show a relation between ciphertexts of cryptosystems, pR04 and pR05, and instances of
GapCVE. Although the cryptosystems are less secure than the original ones, we can show that
their security are based on the worst-case of certain lattice problems as in Kawachi, Tanaka,
and XagawalTX06].

Our connection between the ciphertexts and GapOwlies that if we set a large factor
for the underlying lattice problems, for smallthe LLL algorithm [LLL82] heuristically suc-
ceed to distinguish ciphertexts of 0 and 1. From the positive view, we can apply Micciancio
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and Vadhan's zero-knowledge protocol for GapGYRMVO03] and obtain a verifiable encryp-
tion scheme. Based on the protocol (8{05] and the above connection, we construct a proof
of plaintext knowledge for pR04 and pRO5.

Organization. In Section 5.2we review tools for construction of proof of plaintext knowl-
edge. InSection 5.3we construct a proof of plaintext knowledge for the modified Regev’'04
cryptosystem. We also construct it for the modified Regev’05 cryptosysteBedtion 5.4
Finally we conclude irSection 5.5

5.2 Tools for Proof of Plaintext Knowledge

5.2.1 The Ajtai-Dwork Cryptosystem and Nguyen and Stern’s Embed-
ding

The Ajtai-Dwork cryptosystem is a 1-bit lattice-based cryptosystem. Nguyen and Stern showed
how to reduce distinguishing encryptions of O from one of 1 to GapCléPsomey > 1.
We briefly review error-free version of the Ajtai-Dwork cryptosystem, which is proposed
by Goldreich, Goldwasser, and Hale(GH974, and Nguyen and Stern’s embedding tech-
niques NS9§. For more details of the embedding techniques, BEOB Section 4].

First, we briefly review the Ajtai-Dwork cryptosystem. For more details,3sdion 3.2.1
The secret key of the Ajtai-Dwork cryptosystenuis R" whose length is 1. The public key is
m+ n vectors inn-dimensional space and an index. We denote it\gs.( ., Wn, V1, ..., Vm, o).
The vectorsw;, v; are chosen from hyperplangs € [0,n"]" | (x,u) € Z} and “blurred” by
adding small noises. The indexis chosen from(1, ..., m} such thatu,v;) is near by odd
integers. Encryption of- € {0, 1} is produced as follows: (1) Choose random string
ri...rm € {0,13™ (2) Computec = (o/2)vi, + > rivi modP(wy, ..., w,). We decrypt a
ciphertextc € P(wq,...,w,) into 0 if frc ((c,u)) < 1/4 and into 1 if frc((c, u)) > 1/4.

Nguyen and Stern showed the following embeddingS9g. For any public keypk of the
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Ajtai-Dwork cryptosystem, leB, € R@+m)x(n+m) pa

>K1W1 oo Kawy, KavpoLe K1Vm<
1

Ko |

whereK; andK; are suitably chosen and all empty spaces are set by 0. For any ciphertext
c € P(Wa,...,W,), definex, = (Kéc) e R?™M. Nguyen and Stern showed for suitably chosen
Ky andKj, Dist(x., L(Bpk)) is small ifcis a legal ciphertext of O withk and Distk, L(By)) is

large if c decrypts into 1 with high probability.

5.2.2 Micciancio and Vadhan's Zero-Knowledge Protocol

In [MVO3], Micciancio and Vadhan introduced a zero-knowledge protocol for GapCVP
They use the following observation by Goldreich and Goldwass&(J. Consider twon-
dimensional unit hyperballs, one center locates the origin and the other center locates the point
that distance igl, i.e., B(0, 1) andB(y, 1), wherelly|| = d. If d = Q(+/n/logn), ratio between

a volume of an intersection of two hyperballs and a volume of a hyperballgsl¥(n). Based

on this observation, Goldreich and Goldwasser showed statistical zero-knowledge protocol for
coGapCVF;z( \7Togm) [GGOQ. Micciancio and Vadhan also constructed honest-verifier statisti-
cal zero-knowledge proof system for Gapcg}(\l%—) [MVO03].

/logn
We refer Micciancio and Vadhan’s protocol as the MV protocol.

Protocol 5.2.1(The MV protocol, MVO03]). Let Pyv andVyy denote the prover and the ver-
ifier, respectively. The common input iB,(y,t). The auxiliary input to the prover i € Z"
such that|Bw —y|| < t.

Step P1 Choosek random bitscy, ..., ¢k € {0,1} independently. Also choose error vectors
ry,...,rc € B(0,yt/2) independently and uniformly at random. Then, check if there
exists an index* such thatjr;- + (2¢- — L)u|| < yt/2. If not, seti* = 1 and redefine
¢- = 0 andrj- = u/2, so thatl|r;- + (2¢i- — )u|| < yt/2 is certainly satisfied. Finally,
compute pointsn; = ¢y + ry modB fori = 1,...,kand send them t¥y, .

Step V1 Send a random challenge bit {0, 1} to Pyy .
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Step P2 Receive a challenge hite {0,1}. If § = Z!‘zl ¢ mod 2, then the prover completes the
proof sending bitg; and lattice vectorBv; = m;—(ri+cy) toVyy. If § # Z!‘zlci mod 2,
then the prover sends the same messag¥g\obut withci- andBv;- replaced by t ¢
andBv;: + (2¢;- — 1)(y — u).

Step V2 Receivek bitscy, ..., ¢ andk lattice pointsBvy, . .., Bvx and check that they satisfy
YK, 6 =q (mod 2) andm; — (Bv; + gy)l| < yt/2foralli = 1,...,k.

A completeness property is evident.

Theorem 5.2.2(Zero Knowledge) (Pwv, Vuv) is a statistical zero-knowledge proof system
with perfect completeness and soundness etf@r provided one of the following conditions
holds:

e v = Q(+/n/logn) and k= poly(n) is a syficiently large polynomial, or
e vy = Q(+/n) and k= w(logn) is any superlogarithmic function of n, or
e y = n®> M and k= w(1) is any superconstant function of n.

Theorem 5.2.3(Proof of Knowledge) There is a probabilistic polynomial-time algorithmyik
such that if a prover Pmakes Wy accept with probabilityl/2 + € on some instancéB, y, t),
then K7, (B, y, t) outputs a vectow € Z" satisfying||Bw — y|| < yt with probabilitye.

5.2.3 A Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem

Goldwasser and Kharchenk@K05] showed a interactive zero-knowledge proof of plaintext
knowledge (PPK) for the Ajtai-Dwork cryptosystem using the above two results.

First, we immediately obtain a statistical zero-knowledge protocol for a statemenistaat
legal ciphertext of 0 combining the above results. They also show a statistical zero-knowledge
protocol for a statement thatis a legal ciphertext of 1 setting parameters carefully and using
the fact thatc; = vi,/2 + co modP(ws, ..., w,) for some legal ciphertexts; of 1. Thus, in
other words, they showed a verifiable encryption for a statement “the ciphedextypts into
o

They showed a proof of plaintext knowledge for the Ajtai-Dwork cryptosystem implicitly
using pseudohomomorphisidTX06] of the cryptosystem. We state informally their protocol:
Let a common input be a paipK, c). The auxiliary inputs to the prover are a plaintexand a
randomness that used in the ciphertext. In the first step, the prover makes a dummy ciphertext
of a random biv”’. The verifier sends a challenge bitSuppose thai = 0. The prover sends
the plaintext and the randomness that used in the dummy ciphertext. The verifier checks its
consistency. Next, suppose tldat 1. The prover invokes a prover of the MV protocol with a
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statement that the sum of input ciphertext and dummy one decrypts-idto’. The verifier
invokes a verifier of the MV protocol. We note that the prover can not send the sum of plaintexts
o @ o’ and the sum of randomness to the verifier since it leaks the part of the knowledge.

5.3 A Proof of Plaintext Knowledge for the Regev’'04 Cryp-
tosystem

5.3.1 The Regev’'04 Cryptosystem

Instead of the original cryptosystem, we review the modified origeiction 3.3.1Letc > 0 is
a constant. The parameter of original one is 0.

Cryptosystem 5.3.1(R04). Let n be a security paramete¥, 28" andm = cyn? wherecy, is a
constant. Ley(n) = w(n**°4/logn). LetH = {h € [ VN, 2VN) | frc (h) < 1/(8n°m)}.

Private Key: Chooseh € H uniformly at random. Let denoteN/h. The private key is the
numberh (or d).

Public Key: Choosea € [2/y(n),2V2/y(n)) uniformly at random. We choosm values
z,...,Zy from @y, by choosingxy, ..., X, andys, . .., ym, Where eaclx; is chosen from
{0,1,...,[h]} at random and each is chosen according t#,. Letig be an index such
thatx;, is odd. Fon € {1,...,m}, leta be[NZz]. The public key isd,, ..., an, o).

Encryption: A plaintext iso € {0,1}. Choose a random string= r;...r, € {0,1}™. The
ciphertextiso|a,/2] + >, ria; mod N.

Decryption: Letw e {0,...,N — 1} be a receiving ciphertext. We decrypt O if fwe/d) < 1/4
and 1 otherwise.

We summary the decryption errors and the security of R04 as follows.

Theorem 5.3.2. The security of the Regev’04 cryptosystem is based on the worst case of
O(y(n) vN)-USVP. The decryption error probability is at mogtee* M/ m

We modify parameters and the key-generation algorithm as follows:
Cryptosystem 5.3.3(pR04)

Parameters: Letc = 3 andt, = n~3°. Let alsoy(n) = n*logn.
Private Key: Same as the original one.
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Public Key: Choosea € [2/y(n),2V2/y(n)) uniformly at random. We choose values
z,...,Zy from @y, by choosingx,, ..., X andys, ..., ym. If frc (y;) > t, we rechoosg;.
Fori € {1,...,m}, leta; be|Nz]. Letio be an index such thag, is odd andg, is even.
The public key is &y, ..., am, o).

We refer this modified version as pR04.
Before summarizing security and correctness of pR04, we show a lemma to bound the tail
of Gaussian distributio®,,.

Lemma 5.3.4.Let n be a security parameter. Let- 0 be a real number ifi2/y(n), 2 V2/y(n)).
Let t, be an integer that asymptotically larger th@&w2 logn/y(n), i.e., t, = w(logn)/y(n).
Finally, let y be a random variable according to the distributdp. Then, the probability that
frc (y) > t, is negligible in n.

Proof. By Lemma 2.3.1we have that

Pr [frc(y) > t,] < Pr [lyl>t]

y~¥o y ~N(0,0?/(27))
22V2/(y(n) V2r) (_ ta )
: ‘ﬁ b U 2@V V)
22 t2y(n)?
= oM exp(‘” 8 )

Since we set, = w(/logn)/y(n), we obtain expfw(logn)) as the upperbound of the proba-
bility. O

Let us argue the correctness of pR0O4.

Lemma 5.3.5(Correctness)Let g and g be legal ciphertexts dd and 1 respectively. Then,

1 1 2
nt, > - — -
+(Mm+1) > n

Co Cl) i 1
d/— 2 2m

1 2
frc(a) < T +mt, < - andfrc (— >

l.e., there exist no decryption errors.

Proof. We first evaluate fréco/d). Letcy = X7, rig mod N. Considering #ects by modulo
N at mostmtimes, we have that

‘co - (Z ria; modd Lh])

i=1

1
<m|N -d|h]| = md- frc(h) < @d.
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By the triangle inequality,

m . .
fro (%) < L. 4 fro (Zima i@ moddin]
8n3

d d
Z| 1a|)
d

S?-I—f (

where in the last inequality we use the fact |[NZz]. Sincez = (X +Y;)/handN = dh,

w{iS g o)

i=1
Sinced is much larger tham, -~ T 1<z L. Therefore, we obtain frgy/d) < 4n3 + mt,.
We next evaluate frfc;/d). Note that for some legal ciphertext ofdg, ¢, = |&,/2] +
Co mod N. From the construction af,,

l&,/2] a,/2\ 1 Nz,/2\ 2 (xio+yio) 2 1 (y.o 2 1
frc( . > frc . —azfrc . —azfrc > _H‘E_fr 2)_825_t"’

where in the last inequality we use the fdds much larger than,. By the triangle inequality,
we obtain that

frc(%) _ frC(Leuo/ZJ +Oc|;O modN)

> 1 t ! + mt, L

-2 % \4n3 8n®m
1 1

> E—F—(m+ Hit,.

We define the assumption luSVP as follows:
Assumption 5.3.6(Infeasibility of uSVP) There exists no polynomial-time algorithm that

solvesO(n*5)-uSVP with non-negligible probability.

5.3.2 Preliminaries for PPK

Let E(pk, o) be a set of legal ciphertexts of with a public keypk. We define a threshold of
GapCVP asg = /m? + KZmand an approximation factor of GapCVPjas ,/%.
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Definition 5.3.7. Let pk = (as,...,am, lg) be a public key of pR04. Let be an integer in

{0,1,...,N — 1}. Define a mappingF (pk,c) = (Bt Xc), wherex, = (Kg") € Z™2 and

Bpk € Z(M2x(m+1) jg

KiN Kivi -+ Kivp
1

Bpk = K2 ,

K |

wherev; = a;, K1 = n*, K, = n? and empty spaces are set by 0.

We remark thak; > yt and<1- + Y20 < n-4

8n3m Ko

5.3.3 From Ciphertexts to GapCVP (or Verifiable Encryption)
From Ciphertexts of O to Instances of GapCVP

We show thafF (-, -) maps a valid ciphertext of 0 to a YES instance of GapCafiil a ciphertext
that decrypts to 1 to a NO instance of one. Hence, we have an interactive proacfishat
ciphertext of 0 using the MV protocol and this transformation.

Lemma 5.3.8.

1. For (sk, pk) and ce &(pk, 0), ¥ (pk, €) is a YES instance @apCVP.
2. For any instance ofsk, pk) and ce {0,1,..., N — 1} such that sk, c) = 1, ¥ (pk,c) is
a NO instance oGapCVP.

Proof. (1) Sincec € &(pk,0), there exists a string such thatc = Y, r;v, modN. Thus,
there exists a vectow = (1,4, ...,8m), Wherea; € {-m,...,0} andg; € {0,1}, such that
c=aiN + X, Bvi. Itis evident thaBpw € L. Hence, we obtain that

. KicC . KicC
Dlst(( S ) ka) < Dlst(( 5 ) Bpkw)
m
j
< M+ Kim=t.

(2) Letc e {0,1,...,N -1} be any vector which decrypts to 1 andTet yt. From the remark,
it follows thatT/n* < 1/4 < frc (c/d). By Claim 5.3.9Dist((Kgc), ka) < T can not hold. Thus,
¥ (pk, ¢) is a NO instance. O
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Claim 5.3.9. Assume that K> T > 0. Letpk be a public key gpR0O4and ce {0,1,...,N—1}.
For syficiently large n, IDist((3°). Ly ) < T thenfre (c/d) < T(g3- + @) <T/n*

0 8ndm

Proof. From the assumption, there exists an integer veatot ‘(a1,fs,...,Bm) such that

'(Kéc) — BpkWH < T. We definee = Kic — Ky(a:N + X", Bivi). From the construction of

Bk, we obtain that

m
a? + K%Z,Bi2+e2 < T2
i1

From the factk; > T ande € K;Z, e must be 0. Recall that = ;N + Y, Bivi + e/K;.
Therefore,

fre (¢/d) < lealfre (N/d) + ) Bilfre (vi/d)

i=1

< Tfrc(h) + i 1Bl (1/d + frc (vi))
=)

By the Cauchy-Schwartz inequality and the upper bound @, we have} ", gi(1/d +

fre(y)) < ZmB2VIm(L/d+fre () < 4/ 2fre(y)’T/Ka. Moreover, from the key

generation algorithm, we havg/Z{Ql 2frc(y))? < V2mt,. Hence, we obtain fric/d) <

T(g5= + %) and complete the proof. .

Protocol 5.3.10(Protocoj: proving that a ciphertext decrypts to. Qet P andV, denote the
prover and the verifier, respectively. Let the common input be a pa&irc), wherepk is a
public key of pR04 and is an elementif0, 1,..., N — 1}. The auxiliary input to the prover is
Bi,....pm€ {0,1} such that = Y, Bivi mod N.

Prover Py: Computes an integer; such that = a;N + Y., Bivi. Invokes the provePyy to
prove that inputF (pk, c) is a YES instance of GapCVRvith an auxiliary inputByw,
wherew = (a1, B4, . . ., Bm).

Verifier Vp: Invoke the verifierVyy to verify that input#(pk,c) is a YES instance of
GapCVP.

Hence we use the MV protocol, we obtain the following lemma.

Lemma 5.3.11.Protocol (Pg, Vy) is a statistical zero-knowledge protocol.

From Ciphertexts of 1 to Instances of GapCVP

If cis a valid ciphertext of 1 theg := ¢ — |Vvi,/2] mod N is some valid ciphertext of 0. On
the other hand, even @ be a ciphertext that decrypts to 0, there exists the caseytisatot

68



a ciphertext that decrypts to 1 because(¥rg is not O and there areffects by moduloN.
However, we ensurg (pk, y) is a NO instance of GapC\/Ras follows.

Lemma5.3.12.Lety=c— |V;,/2] modN.

1. For (sk, pk) and ce &(pk, 1), ¥ (pk, y) is a YES instance @¢apCVP.
2. For any instance ofsk, pk) and ce {0, 1,...,N — 1} such that sk, c) = 0, F(pk, y) is
a NO instance 06apCVP.

Proof. (1) Sincec is a legal ciphertext of 1, we hayas a legal ciphertext of 0. Therefore, by
Lemma 5.3.87 (pk, y) is a YES instance of GapC\P
(2) Letce{0,1,...,N — 1} be a ciphertext that decrypts into 0. By the triangle inequality,

frc(c - Lvio/zj mod N) S frc(LVi(a/ZJ) _frc (g) —frc(h).

From the decryption algorithm, f(c/d) < 1/4. Therefore, we obtain

frC(c—[vio/ZJmodN) 1 1/ 1 1 ( 1 )

>ty - 14— —— >ty + ——
d -2 8n3m — 4 +8n3m

Note thatl < % - (ta + ) Thus, byClaim 5.3.9 Dist((Kgc), ka) < vyt can not hold, and

4 8n’m

F (pk,y) is a NO instance of GapC\P O

Protocol 5.3.13(Protocol: proving that a ciphertext decrypts to. I)et P, andV; denote
the prover and the verifier, respectively. The common input is a p&irc), wherepk is a
public key of pR0O4 and is an integer in0, 1,..., N — 1}. The auxiliary input to the prover is
Bi,....pm€ {0,1} such that = |vi,/2] + 3, Bivi mod N.

Prover P;: Lety = c—|vi,/2] modN. Computes an integer such that = a;N + Y, Bivi.
Invokes the provePyy to prove that inpufF (pk, y) is a YES instance of GapC\Rvith
an auxiliary inpuBw, wherew = (a1, 1, . . ., Bm)-

Verifier Vi Invoke the verifierVyy to verify that input#(pk,y) is a YES instance of
GapCVP.

Similar to the case of ciphertexts of 0, we obtain the following lemma.

Lemma 5.3.14.Protocol (P,, V,) is a statistical zero-knowledge protocol.
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5.3.4 Definition of Relation

In this section, we consider the relation between the sum and the instance of GapeHe
following section, we defin& = 4t.

Definition 5.3.15(Relation for pR04) Let pk = (ay, ..., am, ip) be a public key of pR04; and
¢ elements from{0,1,...,N - 1}, 0’ ando” € {0,1}, r’ € {0, 1}™, andp be a point fromLy.
We say that inputgk, ) and witnessd, o, 1", o, p) are inRyroa4 f:

o C = Eu(o’;1)
. Dist((Kl(”d“’”Lg’iO/ 2] mod "), p) < yt’ (i.e.,c+ ¢ modN decrypts tar”.)

Theorem 5.3.16.Let (pk,sk) be an instance opR04 If ((pk,c),w) € Ryros for w =
(c,o’,r',0”,p), theno’ & o” = D(sk, C).

Proof. We first consider the cage’ = 0. In this case, we have that an inequality

Dist((Kl(C + comod N))’ p) <,

Applying Claim 5.3.9 we obtain that fr¢(c + ¢ modN)/d) < yt'/n*. Suppose that’ = 0.
Sincec’ is a legal ciphertext, frec’/d) < 2/n. Itimplies that fro(c/d) < yt'/n*+2/n+1/8n°m <
1/4 andD(sk, c) = 0. We also suppose that = 1. Sincec’ is a legal ciphertexts, fi@’ /d) >
1/2 - 2/n. Therefore, by triangle inequality f(c/d) > 1/2-2/n—yt’'/n*-1/8n°m > 1/4 and
D(sk,c) = 1.
Next, we consider the case’ = 1, i.e.,
Dist((Kl(C +C - L\SO/ZJ mod N))’ p) <t

Applying Claim 5.3.9 we obtain that fré¢(c + ¢’ — |v,/2] modN)/d) < yt’/n®. It implies that
frc ((c + ¢ modN)/d) > 1/2—(frc (h)+2t,)—yt’/n* > 1/2—2/n. Suppose that’ = 0. Sincec’
is a legal ciphertext, frec’/d) < 2/n. Itimplies that frolc/d) > 1/2-2/n-2/n-1/8n*m > 1/4
andD(sk,c) = 1. Next, we suppose that = 1. Sincec is a legal ciphertext, we have that
frc (¢'/d) > 1/2—(2frc(h)+2mt,) > 1/2—-2/n. Itimplies that fro(c/d) < 2/n+2/n+1/8n°m <
1/4 andD(sk, c) = 0. We complete the proof. O

5.3.5 Main Protocol

Protocol 5.3.17(Protocol PPK) Let P andV denote a prover and a verifier, respectively. A
common input isgk, ). An auxiliary input to the prover isx, r) such that = Ey(o; r).
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Define a mappingz(pk,c) = (Bp, Xc. t') wheret’” = 2t and By and x. are similar to
7 (pk,c). Let Protocd] (or Protoco]) be Protocq) (or Protocol) where# (-, -) is replaced
by G(-, -) respectively.

Step P1 P selectso” € {0,1} andr’ € {0, 1}" randomly. Computes’ = Ey(c”; r’) and sends
ctoV.

Step V1 V sends a random challenge bi€ {0, 1} to P.

Step P2 If 6 = 0, P sends pair¢’,r’). If 6 = 1, P computesr” = o + 0’ mod 2 and sends”
toV. Letc = (c+ ) mod N and runs Protocg) on input pk, c) as prover.

Step V2 If ¢ = 0. V accepts ifc’ = E,(o”;1’), else rejects. 16 = 1. Run the Protocg), on
input (pk, c) as verifier.

Theorem 5.3.18 Regev 04 PPK)An interactive protocofP, V) is a proof of knowledge system
with knowledge erroi3/4 for Ryros Moreover, the protoco(P, V) is a computational zero
knowledge under the assumption IluSVP.

The proofs of followingLemma 5.3.1%ndLemma 5.3.2Cre inSection 5.3.6 We need the
lemmas for larger protocol PPK.

Lemma 5.3.19.For syficiently large n,

1. If (sk, pk) is an instance 0pR04 ¢ = ¢; + ¢; mod N such that [sk,c) = 0and G, ¢, €
&(pk, -), G(pk, €) is a YES instance @&apCVP.

2. Let (sk, pk) be an instance gpR04and ce {0,1,...,N — 1}. If frc(c/d) > 1/8, then
G(pk, c) is a NO instance oGapCVP.

Lemma 5.3.20.For syficiently large n,

1. If (sk, pk) is an instance 0pR0O4 ¢ = c; + ¢c; mod N such that fsk,c) = 1and G, c; €
&(pk, -), G(pk,Y) is a YES instance @&apCVP, where y= ¢ - |V;,/2| modN.

2. Let (sk, pk) be an instance gpR04and ce {0,1,...,N — 1}. If frc(c/d) < 3/8, then
G(pk,y) is a NO instance o6apCVP, where y= ¢ - [Vv,/2| modN.

Proof of CompletenessSince it is evident, we omit the proof. O

Proof of Validity with error3/4. Let pk = (ay,...,am,lp) be a public key of pR0O4. and ¢
{0,1,...,N —1}. Let P* be an arbitrary prover that makéaccept with probability + 3/4 for
€ > 0 on common inputdk, c).

We construct a knowledge extractiéras follows. K’s input is (k, ¢). First, K choose a
random tape oP*. Let¢; denotes a challenge bit in Protogal K runsP* three times, where
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the challenge bit are 0, (@) and (11). K obtains three view3,, T1, andT,. Views are in
forms thatT, = (¢',0,07,1'), Ty = (¢, L, 0", T)), andT, = (¢, 1,0, T}), whereT; andT, are
transcripts of Protocg) thaté; are 0 and 1 respectively. If any one of three views is rejected,
K outputsL and halts. Otherwise, i.e., three views are acceg{edbtains a vectop that is
witness of GapCVPusing the extractor in Protogpbr Protoco]. Outputs ¢, 0", 1’, 0", p)
and halts.

Note that the probabilityk does not outpuiL is at leaste. Therefore,K is indeed the
knowledge extractor. |

Proof of Zero-knowledge of PPKMe construct a simulat@ as follows: LetS,, is a simulator
for Protoco]..

Step P1 ChoosesA € {0, 1} randomly (Predictor of a challenge bit). Af = 0, chooses’, r’
randomly and computes = Ey(o’;r’). If A = 1, chooses”, r” randomly, computes
C = Ex(o”;1”), and setg’ = c— cmodN. Send<’ to V*.

Step V1 Receives a challenge itfrom V*.

Step P2, V2If A # ¢, outputsL and halts. IfA = § = 0 outputs €¢,6,07,1’). If A =6 =1,
invoke S, with input (pk, €). LetT = S, (pk, €). Outputs ¢, 6,0, T) and halts.

We assume that ISVP holds, hence according to the security property of pRe40fthen
¢’ is computationally indistinguishable from the uniform distribution{On1,..., N — 1}; if
A = 0thenc’ = c—c modN is also indistinguishable from the uniform distribution. Therefore,
the generated transcripts is computationally indistinguishable from a real transcript. ©

5.3.6 Proof of Lemmas

Proof ofLemma 5.3.19(1) There are two cases thatan decrypts into 0: when both and
C, are ciphertexts of 0 and when both are ciphertexts of 1.

Suppose that;, ¢, € E(pk, 0). FromLemma 5.3.8Dist((*s), L(By)) < tfori = 1,2. By
Lemma 5.3.2below, Thus, folc = ¢; + ¢c; mod N, we have that

(K
Dlst(( Sc), L(Bpk)) <2t+1<4t=t.

Next, suppose that;, c, € E(pk,1). Thus, fori = 1,2, ¢ = ¢ — vi,/2 modN € &(pk, 0).
By Lemma 5.3.21below, we have that foc = ¢; + ¢, modN, Dist((K(ﬂ, L(Bpk)) < 2t+1.
Consider the vectar = ¢ + vi, mod N. By Lemma 5.3.22we have that

. K
Dlst(( Olc) L(Bpk)) <2t+1+ ,/K% +1<4t=t.
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(2) Letce {0,1,...,N — 1} be any ciphertext such that ffc/d) > 1/8. LetT = yt’. Note that
T/n* < 1/8 < frc(c/d). Hence, byClaim 5.3.9Dist((K3°), L(Bpk)) < T can not hold. Thus,
G(pk, c) is a NO instance of the GapCyP O

Proof ofLemma 5.3.20(1) Without a loss of generality, we suppose tkate &(pk,0) and
C; € &(pk,1). Sincec, is a legal ciphertext of 0, frohemma 5.3.8for somep; € L(Byy),
Dist((Kgcl), pl) < t. Sincec; is a legal ciphertext of 1, frohemma 5.3.12for somep, €
L(Bpx). Dist((Kl(Cz’ViOc/)2 m°dN)), pz) < t. Hence, frony = ¢, + ¢; — vi,/2 modN, we obtain

Dist((KSy), L(Bpk)) <2t+l<4t=t

by Lemma 5.3.21

(2) Letc e {0,1,...,N — 1} be any ciphertext such that ffc/d) < 3/8. In this case, we obtain
that frc(y/d) > 1/4 in a similar way to the proof ofemma 5.3.12 Let T = yt’. Note that
T/n* < 1/4 < frc (y/d). Hence, byClaim 5.3.9Dist(("¥Y), L(Bn)) < T can not hold. Thus,
G(pk,y) is a NO instance of the GapCyP |

Lemma 5.3.21. Let pk be a public key ofpR04 p; and p, points from IB). If
for c;,c, € {0,1,...,N — 1}, Dist((Kgcl), pl) < d; and Dist((KBCZ), pz) < d, then

Dist ((:(c++%2 MIN) [ (Bp)) < dy +dp + 1.

Proof. RepresenK;(c; + ¢c; modN) = K;(c; + ¢, + @1 N). Since both vectors, andc, belong
to{0,1,...,N — 1}, we can boundlx,| < 1. Consider a vectqy = Bpkt(al, 0,...,0). Thus, we

obtain that N
Dist(( 13 ),p)sl.

By the triangle inequality, the lemma follows. O

Lemma 5.3.22. Let pk be a public key 0pR04 and p a point from L(B). If for c €
(0.1,....N = 1}, Dist((*3°). p) = d thenDist((***"e ™), 1 (B,)) < d + JKZ+1

Proof. Represenk;(c+Vi, modN) = K;(c+V;,+a1N) for somex; € {-1, 0}. Consider a vector
p’in L(Bp) such thap’ = L(B)'(0,...,0,1,0,...,0) (with 1 at the {p+1)-th position). By the
construction 0By, we have that Digf{**“>*"), p’) < /K2 + 1. By the triangle inequality,
the lemma follows. O
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5.4 A Proof of Plaintext Knowledge for the Regev’'05 Cryp-
tosystem

5.4.1 The Regev’'05 Cryptosystem

Although we review the Regev'05 cryptosystem Section 3.4.1 we briefly review the
Regev’05 cryptosystenReg03 again.

Cryptosystem 5.4.1(R05). Letn be a security parameter (or a dimension of underlying lattice
problems). Leq be a prime andr € (0, 1) a real such thatq > 2+/n. Let mbe an integer
larger than 5¢ + 1) loga.

Private Key: Chooses € Zg uniformly at random. A private key is
Public Key: Choosemvectorsay,...,anm € Zg independently at random. Choosg. .., ey €
Zq4 independently according 9. Computeb; = (a;,s) + & modqg. A public key is

Encryption: Choose a random strirge {0, 1}™. Leto € {0, 1} be a plaintext. A ciphertext is
(X rias modg, o q/2] + YT, riby modq).

Decryption: Let (a,b) € Zj X Zq be a received ciphertext. [ - (a, s)ly < q/4 then decrypt
into O, otherwise into 1.

Regev recommendegl € (n? 2n?) anda = 0o(1/+/nlogn) to tighten the approximation
factor of underlying lattice problems.

Theorem 5.4.2([Reg03). The security of the Regev'05 cryptosystem is based on the worst
case 0fSVPs(/q(ny) aNd SIVPs(/.(nm) for polynomial-time quantum algorithms. The decryption
error probability is at mosp-(Y/m*m) 4 p-am,

We modify the key generation algorithm and parameters as follows:
Cryptosystem 5.4.3(pR05)

Parameter: Letq = ©(n*) be a prime andn = 5(n + 1)(logg + 1). We also define: = 1/n?.
Note thatga = ©(n?/log? n) > 2+/n for sufficiently largen. Lett, = n?logn. Note that
te = w(ga flogn).

Private Key: Same as the original one.

Public Key: Choosemvectorsay,...,an € Zg independently at random. Choaseslements
€1, ...,en € Zq independently according tﬁa. If lalq < t, for all i then computdy, =
(a,S) + & modq, else re-choose,, ..., en. A public key is{(a, bj)}i-1...m

.....
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We refer this modified version as pR05. Note that the probability that there existh
that|el, > t, is negligible inn from the followingLemma 5.4.4 We also note that there exist
no decryption errors in pRO5S.

Lemma 5.4.4. Let n be a security parameter. Let g be a prime and- 0 a real number
such that ¢ > 2+/n. Lett, be an integer that asymptotically larger thaw gflogn, i.e.,
t, = w(qa \/m). Finally, let e be a random variable according to the distributhp. Then,
the probability thatel, > t, is negligible in n.

Proof. By Lemma 2.3.1we have that

FPrilelg > t] < PrlI€12 (L - 1)/d]

2 a/N2n ox ( (ta—l)z/qz)

*Vx (t. —1)/q © 2(a) V27)?
1% t, — 1)°
= n(tf -1) eXp(_ﬂ( qzaz) )

Since we set, = w(ge y/logn), we obtain expfw(logn)) as the upperbound of the probability.
O

The security follows fromTheorem 5.4.2We summarize the property of pR0O5 as follows.

Theorem 5.4.5.The security opRO5is based on the worst case VP ) and SIVPg s for
polynomial-time quantum algorithms. There exist no decryption errors.

We define the assumption ISVP as follows:
Assumption 5.4.6(Infeasibility of SVP) There exists no quantum polynomial-time algorithm

that solves SVEs and SIVRyz with non-negligible probability.

5.4.2 Preliminaries for PPK

Let E(pk, o) be a set of legal ciphertexts of with a public keypk. We define a thresh-
old of GapCVP as = \/(n+ 1)m? + K3m and an approximation factor of GapCVP as

_ 2n+m+3
Y= log (2n+m+3) "

.....

75



Define a mapping (pk, ¢) = (Bp, t, Xc), wherex. = (Kgc) € 723 B € Z@nrm3x(nemi2) jg

-K1q|n+1 Ki(d—-Dunr Kpvy .. K1V

I n+1

K>

Ky ]
wherev; = (?) € Z™1, K, = n*, andK, = n?.
b q

From the definitions of andy, we have thayt = O(n’m). We remark that, for dticiently
largen, 4yt = O(n’m) < Ky and 4t(1 + vmt,/K5) = O(i’m)O(1 + vmlogn) < O(n*) = q/8
from the definitions oK, K;, g, andt,.

5.4.3 From Ciphertexts to Instances of GapCVP (or Verifiable Encryp-
tion)
From Ciphertexts of O to Instances of GapCVP

We show thafF (-, -) maps a valid ciphertext of 0 to a YES instance of GapCafifl a ciphertext
that decrypts into 1 to a NO instance of one. Hence, we have an interactive proofiheat
ciphertext of 0 using the MV protocol and the transformatfof, -).

Lemma 5.4.8.

1. For (sk, pk) andc € &(pk, 0), ¥ (pk, €) is a YES instance @apCVP.
2. For any instance ofsk,pk) andc e Zg” such that Osk,c) = 1, F(pk,c) is a NO
instance ofGapCVP.

Proof. (1) Sincec € &(pk, 0), there exists a string € {0, 1}™ such thatt = Y, r;v; modq.
Thus, there exists an integer vector= (a1, ..., an1, 0,84, ..., Bm), Wherea; € {-m,...,0}
andg; € {0, 1}, such that = Y™ eiqu; + Y1 Bjv;. Itis evident thaByw € L(By). Hence,

we obtain that
Dist((KSC), L(Bpk)) < Dist((KSC), Bpkw)

n+1 m
= JZO{?+ K%Zﬁf
I J

< \/(n+ 1P + Kim=t.
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(2) Letc = (E) € Zg” be any vector which decrypts into 1. LE&t= yt. From the remark, it
follows thatT (1 + vmt,/K2) < 0/4 < |b - (a. S)l. By Claim 5.4.9Dist((*%), L(By)) < T can
not hold. Thus# (pk, ¢) is a NO instance. O

Claim 5.4.9. Let K; > T > 0. Letpk be a public key opRO5andc € Zg*. For syficiently
large n, if Dist((“3°). L(Bw)) < T thenb - (a,9)lq < T(1+ vimit,/Ky).

Proof. From the assumption, there exists an integer vester'(as, .. ., ni2,B1, . . . , Bm) SUCh
that||(5) - Bw|| < T. We definee = Kic - Ky ™ 1t + (Q — L)arniolines + Zy V).
From the construction d,, we obtain that

n+2 m

D+ KEY B +leP < T2
i=1 =1

From the factk; > T ande € K;Z™1, e must be0. We note that? ., < T2. Now, recall that

n+2 —

Cc= erl-i-ll aiqu; + (q - 1)a'n+2un+1 + ernzlﬁivi + e/Kj. Therefore,
m m m
b-(as=(@-Danz+ ) Bbi— ) (a9 =-anz+ ) fie (Moda).
i-1 i=1 i=1
By the Cauchy-Schwartz inequality and the upper bound@f, we have|2{21,8ia|q <
\/Z{‘llﬁf \/Zi"llle.lf1 < XD, 1elT/Kz. Moreover, from the key generation algorithm, we

have ,/Z{Qllellg < +/mt,. Hence, by triangle inequality, we obtajp—(a,s)l; < T(1 +
y/mt,/K5) and complete the proof. O

Protocol 5.4.10(Protoco}: proving that a ciphertext decrypts into. 0, andV, denote the
prover and the verifier, respectively. The common input is a jpé&ird), wherepk is a public
key of pRO5 and is a vector inZQ*l. The prover’s auxiliary input iy, ...,B8m € {0, 1} such
thatc = Y, Bivi modg.

n+1

Prover Po: Compute integergy, ..., an; such thatc = ¥ B + 221 daiv;. Invoke the
prover Pyy to prove that the inpuf (pk,c) is a YES instance of GapCVRwith an
auxiliary inputBgw, wherew = Yaa,...,@n1,0,B1, ..., Bm).

Verifier Vp: Invoke the verifierVyy to verify that the inputF(pk,c) is a YES instance of
GapCVPB.

Hence we use the MV protocol, we obtain the lemma as follows.

Lemma 5.4.11.The protocol P, Vo) is a statistical zero-knowledge protocol.
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From Ciphertexts of 1 to Instances of GapCVP
Lemma5.4.12.Lety = c-|q/2] u,;1 modq.

1. For (sk, pk) andc € &(pk, 1), ¥ (pk,y) is a YES instance &apCVP.
2. For any instance ofsk,pk) andc € Zg” such that Osk,c) = 0, F(pk,y) is a NO
instance ofGapCVP.

Proof. (1) Sincec is a legal ciphertext of 1y is a legal ciphertext of 0. The proof is similar to
that ofLemma 5.4.8

(2) We considely = ¢ — |g/2] u,,1 modg. In this caseD(sk,y) = 1. Therefore, we prove in a
similar way to the proof oLemma 5.4.8 O

Protocol 5.4.13(Protocol: proving that a ciphertext decrypts into. 19; andV; denote the
prover and the verifier, respectively. The common input is a jpé#ird), wherepk is a public
key of pRO5 anat is a vector frorng”. The prover’s auxiliary inputigs, ..., Bm € {0, 1} such
thatc = Y, Bivi modg.

Prover P;: Lety = ¢ — [g/2]un modg. Compute integersa,...,an,1 Such thatc =
19/2] U1 + X0 BV + Z?:%qaiui. Invoke the proverPy, to prove that input
F(pk,y) is a YES instance of GapCVRwith an auxiliary inputByw, wherew =

t(al’ ceey an+1’ 09[)’17 L] ’ﬁm)-
Verifier V;: Invoke the verifierVyy to verify that input#(pk,y) is a YES instance of

GapCVPB.
We obtain the following lemma in a similar way to the case of ciphertexts of 0.

Lemma 5.4.14.The protocol P4, V,) is a statistical zero-knowledge protocol.

5.4.4 Definition of Relation

We definet’ = 4t.

.....

andc’ be vectors fronZQ*l. Leto’ ando” be bits,r” anm-bit string, ando a vector inL(By).
We say that inputgk, c) and witnessd, o, 1", o, p) are inRyros f:

e ¢ =Eu(o’;r')and

o Dist((fx(cremoriaAmamodd) p) <yt (i.e.,c+ ¢ modq decrypts intar”.)
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Theorem 5.4.16.Let (pk,sk) be an instance opROS If ((pk,C),w) € Ryros for w =
(c,o’,r",0”,p), theno’ & 0" = D(sk, C).

.....

We first consider the cage” = 0. In this case, we have that an inequality

Dist((Kl(C " % mod Q)), p) <At

Applying Claim 5.4.9 we obtain thatb + b/ — (a+ &, s)l; < yt'(1 + vmt,/K;). Suppose that
o’ = 0. Sincec' is a legal ciphertextp’ —(a, s)l; < mt,. It implies thatlb - (a,s)l; < mt, +
(1 + vmt,/K;) < g/4 andD(sk,c) = 0. We also suppose that = 1. Sincec is a legal
ciphertext]b’ — (a, s)lq > g/2—-mt,. Itimplies thatib — (a, S)l4 > q/2—mt,—yt'(1+ Vmt,/K3) >
g/4 andD(sk,c) = 1.

Next, we consider the case’ = 1, i.e.,

Di St((Kl(c +C — Lqi)ZJ Un.1 Mod q)), p) <t

Applying Claim 5.4.9 we obtain thalb + b’ — |g/2] - (a+ &, S)lg < yt'(1+ vmt,/K>). Hence
we havegb + b’ — (a+ @, s)ly > 9/2—yt'(1+ vVmt,/K;). Suppose that’ = 0. Sincec’ is a legal
ciphertext)b’ — (a, s)l; < mt,. Itimplies thatb — (a, s)|; > 9/2—mt, —yt'(1+ vVmt,/K;) > q/4
andD(sk,c) = 1. Next, we suppose that = 1. Sincec’ is a legal ciphertext, we have that
b’ —(&,9)lq > 9/2 — mt,. It implies thatlb - (a, s)l; < yt'(1+ VYmt,/K;) + mt, < g/4 and
D(sk, c) = 0. We complete the proof. |

5.4.5 Main Protocol

Protocol 5.4.17(Protocol PPK) Let P andV denote the prover and the verifier, respectively.

The common input is a paipk, ¢). The auxiliary input is a paird, r) such that = Ey(o; r).
Define a mappin@(pk, ) = (Bp, Xc, t) wheret” = 4t and bothB, andx. are similar to

¥ (pk, c). Let Protocq] (or Protoco]) be Protocqj (or Protocof) where# (-, -) is replaced by

G(-,-) respectively.

Step P1 P selectsr’ € {0, 1} andr’ € {0, 1} randomly.P computes’ = E,x(o”; ") and sends
ctoV.

Step V1 V sends a random challenge bi€ {0, 1} to P.

Step P2 If 6 = 0, P sends the pairtf’,r’). If 6 = 1, Pcomputesr” = o+ ¢’ mod 2 and sends
o” toV. Letc = (c+ ¢’) modq and runs Protoct) on the input pk, ) as the prover.

Step V2 If 6 = 0,V accepts ift’ = Ey(o”;1’), else rejects. 16 = 1,V runs the Protocg), on
the input pk, ¢) as the verifier.
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Theorem 5.4.18PPK for pR05) The interactive protocdP, V) is a proof of knowledge system
with knowledge erroi3/4 for Ryres. Moreover, the protoco(P, V) is a computational zero
knowledge under the assumption ISVP.

Our proof is based on the proof of Goldwasser and KharcheBk®p]. Before describing
the proof, we need lemmas that give the properties of the protocols.

Lemma 5.4.19.For syficiently large n,

1. If (sk, pk) be an instance gbRO5andc = ¢; + ¢c; modq such that Psk,c) = 0 and
C1, G2 € E(pK, -), G(pk, ¢) is a YES instance &apCVP.

2. Let(sk, pk) be an instance gfR05andc = (§) € Z3. If |b - (a, )| > /8, theng(pk, ¢)
is a NO instance oGapCVP.

Lemma 5.4.20.For syficiently large n,

1. If (sk, pk) be an instance gbR0O5andc = ¢; + ¢c; modq such that sk,c) = 1 and
C1, C2 € &(pk, -), G(pk,y) is @ YES instance @apCVP, wherey = c-[q/2] un,; modgq.

2. Let (sk, pk) be an instance opRO5andc = (Z‘) € ZQ”. If |b—<(a,s)ly > 30/8, then
G(pk.y) is a NO instance o6apCVP, wherey = ¢ — |g/2] un,; modg.

The proofs ofLemma 5.4.1%ndLemma 5.4.2@re inSection 5.4.6 Let us proveTheo-
rem5.4.18

Proof of completenessSince it is evident, we omit the proof. O

.....

(ab) € Zg”. Let P* be an arbitrary prover that maké accept with probabilitye + 3/4 for
€ > 0 on the common inpupk, ).

We construct a knowledge extractéras follows. K’s input is (pk, ¢). First, K chooses a
random tape oP*. Let s, denote a challenge bit in Protogol K runsP* three times, where
the challenge bits are 0,,(Q) and (11). K obtains three view3,, Ty, andT,. Views are in
forms thatT, = (¢/,0,07,1’), Ty = (¢, 1,0”,T;), andT, = (¢, 1,0, T}), whereT; andT; are
transcripts of Protoc@l thaté; are 0 and 1 respectively. If any one of three views is rejected,
K outputsL and halts. Otherwise, i.e., three views are accep{edbtains a vectop that is
witness of GapCVPusing the extractor of Protogpbr Protoco]. K outputs ¢, 0", 1", 0", p)
and halts.

Note that the probabilit)k does not outpul is at leas®®(e). ThereforeK is indeed the
knowledge extractor. O

80



Proof of zero-knowledge of PPH.et S, be a simulator for Protocpl. We construct a simu-
lator S as follows:

Step P1 Chooses\ € {0, 1} randomly (a predictor of a challenge bit).Af= 0, chooses”, r’
randomly and computes = Ey(o’;r’). If A = 1, chooses”, r” randomly, computes
c = Ex(o”;1r”), and setg’ = c— c modg. Sendg’ to V*.

Step V1 Receives a challenge lditfrom V*.

Step P2, V2If A # 6, outputsL and halts. IfA = § = 0 outputs ¢,6,07,1"). If A =6 =1,
invoke S,» with input (pk, ). LetT = S, (pk, ¢). Outputs ¢, 6,c”,T) and halts.

We assume that ISVP holds, hence according to the security property of pRO5 i®
thenc’ is computationally indistinguishable from the uniform distributionzgr‘ll; ifA=0
thenc’ = ¢ — cmodgq is also indistinguishable from the uniform distribution. Therefore, the
generated transcripts is computationally indistinguishable from a real transcript. |

5.4.6 Proof of Lemmas

Proof ofLemma 5.4.19(1) There are two cases thatan decrypts into 0: when both and
C, are ciphertexts of 0 and when both are ciphertexts of 1.

Suppose thaty, ¢, € E(pk, 0). FromLemma 5.4.8Dist((Kgﬁ), L(Bpk)) <tfori=172. By
Lemma 5.4.2below, Thus, folc = ¢; + ¢, mod g, we have that

: K
Dlst(( cl)c) L(Bpk)) <2t+ Vn+1<4t=t.

Next, suppose that, ¢, € E(pk, 1). Thus, fori = 1,2,¢ = ¢—19/2] un,1 modg € E(pk, 0).
By Lemma 5.4.2below, we have that far = ¢, + ¢, modg, Dist(("éC , L(Bpk)) <2t+ Vn+1.
Consider the vectar = ¢;+C,+2|g/2] un,1 modg. Sinceqis a prime, we have g)/2] = q-1.
By Lemma 5.4.2below, we have that Disé(Kgc), L(Bpk)) <2t+ Vn+1+1<4t=t,
(2) Letc = (}) € Z5™ be any ciphertext such thiit— (a, s)l, > q/8. LetT = yt'. Recall that
T(1+ ymt,/Kp) < 0/8 < [b—(a,9)lq. Hence, byClaim 5.4.9Dist((3°), L(By)) < T can not

hold. ThusG(pk, c) is a NO instance of the GapCyP O

Proof ofLemma 5.4.20(1) Without loss of generality, we suppose tleate E(pk, 0) andc, €
&E(pk, 1). FromLemma 5.4.8andLemma 5.4.12for somepy, p2 € L(Bpx) Dist((Kgcl), pl) <t
and Dist((Kl(Cz‘LO'/ 2lina m°"‘”), pz) < t. Hence, frony = ¢; + C, — | /2] Up2 Mod g, we obtain

(K
Dlst(( Sy), L(Bpk)) <2t+l<4t=t
by Lemma 5.4.21
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(2) Letc = (g) € Zg** be any ciphertext such thiii - (a,s)l; < 39/8. Lety = (ﬁ) In this
case, we obtain tha’ — (&, s)l; > /8. LetT = yt’. Note thatT(1+ vmt,/K;) < q/8 <
b’ — (&, 9)lq. Hence, byClaim 5.4.9Dist((*%'), L(By)) < T can not hold. Thusg(pk.y) is a

NO instance of GapCVp |

Lemma 5.4.21.Let pk be a public key opRO5 p; andp, points from IB,). If for c;,c; €
3+, Dist((*4*). p1) = dy and Dist((*2), pz) = dp, thenDist((*++% ™), | (By,)) < dy +
d + Vn+ 1.

Proof. RepresenKy(c; + ¢, modq) = Ky(c; + ¢ + Zi”:f a;qu;). Since both vectors; and

c, belong to{0,1,...,q — 1}™*, we can bounde;| < 1 for all i. Consider a vectop; =
Bok' (@1, - -, @ns1,0,...,0). Thus, we obtain that

1l o n+1
Dist((Kl Zi:é a.qu.), ps) < Z @< Vn+ 1.
i=1

By the triangle inequality, the lemma follows. |

Lemma 5.4.22.Let pk be a public key opRO5and p a point from L(By). If for c € Zg”,
Dist((*:). p) = d thenDist ((*:(+2¥2}m1modd) | (B,)) < d + 1.

Proof. Sinceqis an odd prime, we have that@/2] = q— 1. Represerk,(c+(q- 1)u,,; mod
) = Ki(c+ (9 — Dups1 + ans2(q — Duy,q) for somea € {-1,0}. Consider a vectop’ in
L(Bp) such thatp’ = L(Bw)'(0,...,0,an:2,0,...,0) (with 1 at the § + 2)-th position). By
the construction oBy,, we have that Dis(t(Kl«q‘1)”"*”3”*2(‘1‘1)””*1)), L(Bpk)) < 1. By the triangle
inequality, the lemma follows. O

5.5 Concluding Remarks

In this chapter we have constructed proofs of plaintext knowledge for pR04 and pROS5.

We list up a few open problems: Verifiable decryption for the lattice-based cryptosystems
and non-malleable proofs for plaintext knowledge for the lattice-based cryptosystems. The for-
mer has many applications. The latter are sources of interactive CCA2-secure cryptosystems.
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