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Abstract

We propose multi-bit versions of several single-bit cryptosystems based on lattice problems, the
error-free version of the Ajtai-Dwork cryptosystem by Goldreich, Goldwasser, and Halevi [CRYPTO
'97], the Regev cryptosystems [JACM 2004 and STOC 2005], and the Ajtai cryptosystem [STOC 2005].
We develop a universal technique derived from a general structure behind them for constructing their
multi-bit versions without increase in the size of ciphertexts. By evaluating the tfédetween the
decryption errors and the hardness of underlying lattice problems, it is shown that our multi-bit versions
encryptO(log n)-bit plaintexts into ciphertexts of the same length as the original ones with reasonable
sacrifices of the hardness of the underlying lattice problems. Our technique also reveals an algebraic
property, namegseudohomomorphisrof the lattice-based cryptosystems.

Keyword: multi-bit public-key cryptosystems, lattice problems, pseudohomomorphism.

1 Introduction

Lattice-Based Cryptosystems. The lattice-based cryptosystems have been well-studied since Ajtai’'s sem-

inal result P] on a one-way function based on the worst-case hardness of lattice problems, which initiated
the cryptographic use of lattice problems. Ajtai and Dwork first succeeded to construct public-key crypto-
systems[@] based on the unique shortest vector problem (USVP). After their results, a number of lattice-
based cryptosystems have been proposed in the last decade by using cryptographic advantages of lattice
problems(L3,[10,(34,4,35].

We can roughly classify the lattice-based cryptosystems into two types: (A) those whificgenton
the size of their keys and ciphertexts and the speed of encrygi¢ioryption procedures, but have no security
proofs based on the hardness of well-known lattice problems, and (B) those who have security proofs based
on the lattice problems but are ffieient.

For example, the GGH cryptosysteid], NTRU [19] and their improvement®H,[31,[29,/18] belong to
the type (A). These ardiecient multi-bit cryptosystems related to lattices, but it is unknown whether their
security is based on the hardness of well-known lattice problems. Actually, a few papers reported security
issues of cryptosystems in this ty#8[|11].

On the other hand, those in the type (B) have security proofs based on well-known lattice problems such
as uSVP, the shortest vector problem (SVP) and the shortest linearly independent vectors problem (SIVP)
[6,134,135]. (See AppendifE for their definitions and computational complexity.) In particular, the security
of these cryptosystems can be guaranteed by the worst-case hardness of the lattice problems, i.e., breaking
the cryptosystems on average is at least as hard as solving the lattice problems in the worst case. This
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attractive property of the average-cagarst-case connection has been also studied from a theoretical point
of view [2,127,125,132).

Aside from the interesting property, such cryptosystems generally have longer keys and ciphertexts than
those of the cryptosystems in the type (A). To set their size practically reasonable, their security parameters
must be small, which possibly makes the cryptosystems insecure in a practicalZ@n3eerefore, it is
important to improve theirféiciency for secure lattice-based cryptosystems in the type (B).

In recent years, several researchers actually considered fffigiere lattice-based cryptosystems with
security proofs. For example, Regev constructedfénient lattice-based cryptosystem with shorter keys
[35]. The security is based on the worst-case quantum hardness of certain approximation versions of SVP
and SIVP, that is, his cryptosystem is secure if we have no polynomial-time quantum algorithm that solves
the lattice problems in the worst case. Ajtai also constructedfiaient lattice-based cryptosystem with
shorter keys by using a compact representation of special instances of djSWRdse security is based on
a certain Diophantine approximation problem.

Our Contributions.  We continue to studyfcient lattice-based cryptosystems with security proofs based
on well-known lattice problems or other secure cryptosystems. In particular, we focus on the size of plain-
texts encrypted by the cryptosystems in the type (B). To the best of the authors’ knowledge, all those in
this type are single-bit cryptosystems. We therefore obtain mitiment lattice-based cryptosystems with
security proofs if we succeed to construct their multi-bit versions without increase in the size of ciphertexts.

In this paper, we consider multi-bit versions of the improved Ajtai-Dwork cryptosystem proposed by
Goldreich, Goldwasser, and Halelid], the Regev cryptosystems given B4] and in [35], and the Aj-
tai cryptosysteml4]. We develop a universal technique derived from a general structure behind them for
constructing their multi-bit versions without increase in the size of ciphertexts.

Our technique requires precise evaluation of traffedoetween decryption errors and hardness of un-
derlying lattice problems in the original lattice-based cryptosystems. We firstly give precise evaluation for
the trade-€'s to apply our technique to constructions of the multi-bit versions. This precise evaluation also
clarifies a quantitative relationship between the security levels and the decryption errors in the lattice-based
cryptosystems, which may be useful to improve the cryptosystems beyond our results.

Due to this evaluation of the cryptosystems, it is shown that our multi-bit versions er@ipgtn)-bit
plaintexts into ciphertexts of the same length as the original ones with reasonable sacrifices of the hardness
of the underlying lattice problems.

The ciphertexts of our multi-bit version are distributed in the same ciphertext space, theoretically repre-
sented with real numbers, as the original cryptosystem. To represent the real numbers in their ciphertexts,
we have to round their fractional parts with certain precision. The size of ciphertexts then increases if we
process the numbers with high precision. We stress that our technique does not need higher precision than
that of the original cryptosystems, i.e., we take the same precision in our multi-bit versions as that of the
original ones.

See Tabldll for the cryptosystems studied in this paper. (The problems in the “security” fields are
defined in AppendifEl) We call the cryptosystems proposed13,34, 35, /4] AD ggn, R04, R05, and A05,
respectively. We also call the corresponding multi-bit versions &l mR04, mR05, and mAOb.

We also focus on the algebraic property we gaéudohomomorphisof the lattice-based cryptosys-
tems. The homomorphism of ciphertexts is quite useful for many cryptographic applications. (See, e.g.,
[33.) In fact, the single-bit cryptosystems Algy, R04, R0O5 and AO05 implicitly have a similar prop-
erty to the homomorphism. LdE(x1) and E(x,) be ciphertexts ok; andx, € {0, 1}, respectively. Then,

E(x1) + E(x2) becomes a variant d&(x; @ x2). More preciselyE(x1) + E(x2) does not obey the distribution



Ajtai-Dwork Regev'04
cryptosystem ADggH [13 MADggH R04 34 mR04
security O(n')-uSVP | O(nt*¢)-uSVP | O(n3)-uSVP | O(nt5+)-uSVP
size of public key || O(n®logn) O(n°logn) o(n% o(n*
size of private key o(n) o(n?) o(n?) o(m)
size of plaintext 1 O(logn) 1 O(logn)
size of ciphertext || O(n?logn) O(n?logn) o(n?) o(r?)
rounding precision 2" 2" 28 28"
Regev'05 Ajtai
cryptosystem RO5 [35] mRO05 AO05 [4] mAO05
security SVP5(s) SVPs(se DA’ A05
size of public key || O(n?log? n) O(n?log? n) O(n?logn) O(n?logn)
size of private key|| O(nlogn) O(nlogn) O(nlogn) O(nlogn)
size of plaintext 1 O(logn) 1 O(logn)
size of ciphertext O(nlogn) O(nlogn) O(nlogn) O(nlogn)
rounding precision 2" 2" 1/n 1/n

Table 1: summary. £ is any positive constant ar@(f (n)) meansO (f(n) poly(logn)).)

of the ciphertexts, but we can guarantee the same security level as that of the original cryptosystem and
decryptE(x1) + E(X2) to x1 @ X2 by the original private key with a small decryption error. We refer to this
property as the pseudohomomaorphism. Goldwasser and Kharchenko actually made use of a similar property
to construct the plaintext knowledge proof system for the Ajtai-Dwork cryptosystém [
Unfortunately, it is only oveZ, (and direct product groups @5 by concatenating the ciphertexts) that
we can operate the addition of the plaintexts in the single-bit cryptosystems. Itis unlikely that we can naively
simulate the addition over large cyclic groups by concatenating ciphertexts in such single-bit cryptosystems.
In this paper, we present the pseudohomomorphic property of ggADmR04, mR05, and (a slightly
modified version mAO50f) mAQO5 over larger cyclic groups. We believe that this property extends the
possibility of the cryptographic applications of the lattice-based cryptosystems.

Main ldea for Multi-Bit Constructions and Their Security.  We can actually find the following general
structure behind the single-bit cryptosystemsadp, R04, R05, and A05: Their ciphertexts of 0 are basi-
cally distributed according to a periodic Gaussian distribution and those of 1 are also distributed according to
another periodic Gaussian distribution whose peaks are shifted to the middle of the period. We thus embed
two periodic Gaussian distributions into the ciphertext space such that their peaks appear alternatively and
regularly. (See the left side of FigUi®)

Our technique is based on a generalization of this structure. More precisely, we regularlyreoitigle
periodic Gaussian distributions into the ciphertext space rather than only two ones. (See the right side of
Figurell) Embeddingp periodic Gaussian distributions as shown in this figure, the ciphertexts for a plaintext
i €{0,...,p— 1} are distributed according thieth periodic Gaussian distribution. This cyclic structure
enables us not only to improve thifieiency of the cryptosystems but also to guarantee their security.

If we embed too many periodic Gaussian distributions, the decryption errors increase due to the overlaps
of the distributions. We can then decrease the decryption errors by reducing their variance. However, it is
known that smaller variance generally makes such cryptosystems less secure, as commé@iediia |
therefore have to evaluate the tradé&san our multi-bit versions between the decryption errors and their
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Figure 1:the embedding of periodic Gaussian distributions.

security, which depend on their own structures of the cryptosystems.

Once we evaluate their tradéf®, we can apply a general strategy based on the cyclic structure to the
security proofs. The security of the original cryptosystems basically depends on the indistinguishability
between a certain periodic Gaussian distributioand a uniform distributio®J since it is shown in their
security proofs that we can construct d@figent algorithm for a certain hard lattice problem by employing
an dficient distinguisher betweah andU. The goal is thus to construct the distinguisher from an adversary
against the multi-bit version.

We first assume that there exists dfiokent adversary for distinguishing between two Gaussian distri-
butions corresponding two kinds of ciphertexts in our multi-bit version with its public key. By the hybrid
argument, the adversary can distinguish either betwigeandU or betweend; andU. We now suppose
that it can distinguish betweeh; andU. Note that we can slid®; to @y corresponding to ciphertexts
of 0 even if we do not know the private key by the cyclic property of the ciphertexts. Thus, we obtain an
efficient distinguisher betweehy andU. @ is in fact a variance-reduced version of the periodic Gaussian
distribution® used in the original cryptosystem. We can guarantee the indistinguishability between such a
version®g andU is based on the hardness of another lattice problem slightly easier than the original one.
We can therefore guarantee the security of our multi-bit versions similarly to the original ones.

Encryption and Decryption in Multi-Bit Versions.  We also exploit this cyclic structure for the correct-
ness of encryption and decryption procedures. In the original cryptosystems except for R05, the private
key is the periodl of the periodic Gaussian distribution, and the public key consists of the information for
generating the periodic Gaussian distribution corresponding to 0 and the information for shifting the distri-
bution to the other distribution corresponding to 1. The latter information for the shift essentigltyy 2

for a random odd numbét. Then, if we want to encrypt a plaintext 0, we generate the periodic Gaussian
distribution corresponding to 0. Also, if we want to encrypt 1, we generate the distribution corresponding to
0 and then shift it using the latter information.

The private and public keys in our multi-bit versions are slightlffestent from those of the original
ones. The major dlierence is the information for shifting the distribution. If the size of the plaintext space is
p, the information for the shift is essentialkyd/ p), where the numbét must be a coprime tp for unique
decryption. We then interpret the numikeais a generator of the “group” of periodic Gaussian distributions.
We adopt a prime as the size of the plaintext spgafar efficient public key generation in our constructions.
The private key also contains this numleother than the period. Therefore, we can construct correct



encryption and decryption procedures using this information

In the cases of RO5 and mRO5, it is not necessary for keys to contain the information for the shift. We
can actually obtain such information due to their own structures even if it is not given from the public key.
Thus,p is not necessarily a prime in mR05.

Pseudohomomorphism in Multi-Bit Versions. The regular embedding of the periodic Gaussian distri-
butions also gives our multi-bit cryptosystems the algebraic property npaseaiohomomorphisrRecall

that a Gaussian distribution has the following reproducing property: For two random varaldesl X,
according toN(my, s%) andN(m, %), whereN(m, s%) is a Gaussian distribution with meamand standard
deviations, the distribution ofX; + X5 is equal toN(my + mp, § + %). This property implies that the sum of

two ciphertexts (i.e., the sum of two periodic Gaussian distributions) becomes a variant of a ciphertext (i.e.,
a periodic Gaussian distribution with larger variance). This sum can be moreover decrypted into the sum
of two plaintexts with the private key of the multi-bit version, and has the indistinguishability based on the
security of the multi-bit version. By precise analysis of our multi-bit versions, we estimate the upper bound
of the number of the ciphertexts which can be summed without the change of the security and the decryption
errors.

Organization. The rest of this paper is organized as follows. We describe basic notions and notations
for lattice-based cryptosystems in Seci@nn Sectiorid, we first review the improved Ajtai-Dwork cryp-
tosystem AlRcy and then describe the corresponding multi-bit version rg&pin detail. We put the
description of the other multi-bit versions mR04, mR05 and mAO5 to the appendices since the main idea of
their constructions are based on the same universal technique andféneratie among them is mainly the
evaluation of the tradeffs in each of cryptosystems. We also give concluding remarks in S&ktion

2 Basic Notions and Notations

An n-dimensional lattice ifR" is the set_(b1,...,by) = {Zi”:l aibi : i € Z} of all integral combinations of
n linearly independent vectols, . .., b,. The sequence of vectobs, . .., by, is called abasisof the lattice

L. For clarity of notations, we represent a basis by the m&rix (b, ..., b,) € R™". For any basif, we
define thfundamental parallelepipeg(B) = {}.! ; aibi : 0 < a; < 1}. The vecto € R" reduced modulo
the parallelepipeg(B), denoted by mod P (B), is the unique vectoy € £(B) such thaty — x € L(B). The
dual latticeL* of a latticeL is the setL* = {x e R": (x,y) € Zforally € L}. If L is generated by basB,
then 87)~! is a basis for the dual lattice, whe is the transpose d. For more details on lattices, see
the textbook by Micciancio and Goldwassg6].

The security parameterof lattice-based cryptosystems is given by dimension of a lattice in the lattice
problems on which security of the cryptosystems are based.xlLée the closest integer toe R (if there
are two such integers, we choose the smaller.) angkfre |x — | X]| for x € R, i.e., frc(X) is the distance
from x to the closest integer. We defimenody asx — | x/y]y for X,y € R.

The length of a vectax = (xa,...,%,)" € R", denoted byix||, is (X, X?)*/2. The inner product of two
vectorsx = (Xg,..., %) € R"andy = (y1,...,yn)" € R", denoted byx,y), is XL, Vi

A function f(n) is called negligible for sfliciently largen if lim ,_,., n°f(n) = 0 for any constant > 0.
We similarly call f(n) a non-negligible function if there exists a constant 0 such thatf(n) > n=¢ for
sufficiently largen. We call probabilityp exponentially close to 1 ip = 1 — 272 We represent a real



number by rounding its fractional part. If the fractional parixaf R is represented im bits, the rounded
numberx has the precision of/2™, i.e., we havex — x| < 1/2™M.

We say that an algorithm distinguishes between two distributions if the gap between the acceptance
probability for their samples is non-negligible.

A Gaussian distributioN(m, s?) with meanm and standard derivatiogis a distribution orR defined
by the density function(l) = 1/( V2rs) exp(((I — m)/ V2s)?). We will make use of many variants of the
Gaussian distribution in this paper. We define them when required.

3 A Multi-Bit Version of the Improved Ajtai-Dwork Cryptosystem

On behalf of four cryptosystems Adgy, R04, RO5, and A05, we discuss the improved Ajtai-Dwork cryp-
tosystem AlRgH given by Goldreich, Goldwasser, and Hale4B] in detail and apply our technique to
construction of its multi-bit version mAEsH in this section.

3.1 The Improved Ajtai-Dwork Cryptosystem and Its Multi-Bit Version

For understanding our construction intuitively, we first overview the protocol o§&P LetN = n" =
2nogn We define am-dimensional hypercub@ and ann-dimensional balB; asC = {x e R" : 0 < x; <
N,i=1....nfandB, = {x € R" : ||x]| < n""/4} for any constant > 7, respectively. Fou € R" and an
integeri we define a hyperpland; asH; = {x e R" : (x,u) = i}.

S

piss

Figure 2:ciphertexts of 0 in AlRgH Figure 3:ciphertexts of 1 in AlRgH

Roughly speaking, ABgH encrypts 0 into a vector distributed closely around hidaeril)-dimensional
parallel hyperplanesly, H1, Ho, - - - for a normal vectou of Hg, and encrypts 1 into a vector distributed
closely around their intermediate parallel hyperplaHgs- u/(2||u||2), Hy + u/(2||u||2), ---. (See Figure®
and3) Then, the private key is the normal vectorThese distributions of ciphertexts can be obtained from
its public key, which consists of vectors on the hidden hyperplanes and informafmmshifting a vector
on the hyperplanes to another vector on the intermediate hyperplanes. If we know the normal vector, we can
reduce then-dimensional distribution to on the 1-dimensional one along the normal vector. Then, we can
easily find whether a ciphertext distributed around the hidden hyperplanes or the intermediate ones.

We now describe the protocol of Adgy as follows. Our description slightly generalizes the original
one by introducing a parameterwhich controls the variance of the distributions since we need to estimate
a trade-@ between the security and the size of plaintexts in our multi-bit version.

Preparation: All the participants agree with the security parameiethe variance-controlling parameter
r, and the precision? for rounding real numbers.
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Key Generation: We chooseu uniformly at random from th@-dimensional unit ball. Lem = n®. Re-
peating the following procedune times, we samplen vectorsvy,...,Vm: (1) We choosey; from
{x € C : (Xx,u) € Z} uniformly at random, (2) choosles, ..., b, from B; uniformly at random,
(3) and outpuw; = & + 2?:1 bj as a sample. We then take the minimum indgesatisfying that the
width of P(Vig+1, . .., Vig+n) IS at leasin2N, where width of a parallelepiped(xs, . .. Xn) is defined
as min=1,_n Dist(xi, spanks, ..., Xi—1, Xi+1, - - . , Xn)) fOr a distance function Dist(-) between a vector
and an  — 1)-dimensional hyperplane.
Now letw; = vj,,j foreveryj € {1,....n}, V = (v1,...,Vm), andW = (wy,...,wn). We also
choose an indei uniformly at random frondi : (g, u) is odd, whereg; is the vector appeared in
the sampling procedure fot. Note that there are such indicgsandis with probability 1— o(1). If
such indices do not exist, we perform this procedure again. To guarantee the s¢olistypuld be
in [1/2,1). The probability of this event is exponentially close to 1. If the condition is not satisfied,
we sample the vectar again. Then, the private keyisand the public key is\, W, i1).

Encryption: Let S be a uniformly random subset ¢f,2,..., m}. We encrypt a plaintext- € {0, 1} to
X = ZVi; + Yies Vi modP(W).

Decryption: Let x € (W) be a received ciphertext. We decrypto O if frc((x,u)) < 1/4 and to 1
otherwise.

Carefully reading the results if,[13], we obtain the following theorem on the cryptosystemddp.

Theorem 3.1([13]). The cryptosyste®iD gy encrypts dl-bit plaintext into an fin(log n+1)]-bit ciphertext
with no decryption error. The security 8D ggH is based on the worst case off®°)-uSVPforr > 7. The
size of the public key is(@° logn) and the size of the private key i§r®).

As commented in9], we can actually improve the security of Algy by a result in[@]. We give the
precise proof in Appendifol

Theorem 3.2. The security oADggH is based on the worst case ofr®4)-uSVPfor r > 7.

We next describe the multi-bit version maRBy of ADggn. Let p be a prime such that 2 p <
n"~’, where the parametercontrols a trade4 between the size of the plaintext space and the hardness of
underlying lattice problems. In mAE:L, we can encrypt a plaintext of Iqgbits into a ciphertext of the
same size as AEsn. The strategy of our construction basically follows the argument in Sefgtidvote
that the parameteris chosen to keep our version error-free.

Preparation: All the participants agree with the parameters and the precision?2 similarly to ADggh,
and additionally the sizp of the plaintext space.

Key Generation: The key generation procedure is almost the same as that g§ADNe choose an index
i1 uniformly at random fronii : (&, u) # 0 mod p} instead ofi; in the original key generation proce-
dure. We set decryption informatidn= (&, u) mod p. Note that there is suchlawith probability
1-(1/p)™ = 1-0(1). Then, the private key isi(k) and the public key is\( W, i7).

Encryption: LetS be a uniformly random subset &, 1}™. We encryptr- € {0,...,p—-1}tox = %vifl +
Yies Vi mod P(W).

Decryption: We decrypt a received ciphertexte P(W) to | p(x, uy]k! mod p, wherek! is the inverse
of kin Zp.

Before evaluating the performance of mAgy precisely, we give the summary of the results as follows.



Theorem 3.3(security and decryption errorslet r > 7 be any constant and let() be a prime such that

2 < p(n) < n"~’. The cryptosystemADggH encrypts alog p(n)J-bit plaintext into an fin(logn + 1)1-bit
ciphertext without the decryption errors. The securityW?hDggH is based on the worst case ofr®)-

uSVP. The size of the public key is the same as that of the original one. The size of the private key is
[log p(n)] plus that of the original one.

Theorem 3.4(pseudohomomaorphism)let r > 7 be any constant. Also, let p be a prime andddte an
integer such thatp < n'~’. Let E, be the encryption function oiADggn. For any« plaintextso, . . ., o«
(0 < o < p-1), we can decrypt the sumotiphertextsy’i_; Em(ci) mod#(W) into 35 ; oy mod p without
decryption error. Moreover, if there exist two sequences of plaintexts .., o) and(c,...,0%), and a
polynomial-time algorithm that distinguishes betwééh, Em(ci) modP(W) and 3.;_; Em(c) mod P(W)
with its public key, then there exists a polynomial-time algorithm that solye's ©-uSVPin the worst case
with non-negligible probability.

In what follows, we demonstrate the performance of B stated in the above theorems.

3.2 Decryption Errors of mAD ggH

We first evaluate the decryption error probability in mAgy. The following theorem can be proven by a
similar argument to the analysis @ [13]. Since we generalize this theorem for analysis of the pseudo-
homomorphism in mARgH (Theoren3.10), we here give a precise proof.

Theorem 3.5. The cryptosystemmADggy makes no decryption errors.

Proof. Since the decryption error probability for any ciphertext can be estimated by sliding the distribution
to that of the ciphertext of 0, we first estimate the decryption error probability for the ciphertext of 0.

LetH = {x € R" : (x,u) € Z}. From the definition, Dist(,H) < n-n"/4for1<i < m. Thus, we
can obtain frg(v;, u)) < n*"/4 and fro((Tics Vi, U)) < n*"/4. Next, we estimate an inner product between
Yies Vi modP(W) andu. Let YigVi =t + 2?21 gjwj, wherer € £(W). Since|lwj|| > n2Nandp < n~7,
we havelgj| < n° and

5 1 1-r 1 A—r S 7—r 1
frc((r,u)) <n-n -Zn +Zn SE” SZO'

Therefore, we decrypt a ciphertext of 0 into 0 without decryption errors.

Now letp be a ciphertext ofr. LetZ+a:={xeR:frc(x) <a}fora>0andZ+a+b:={xeR:
frc(x—a) < b} for a,b > 0. By a property of the key generation, we h%vel/p, u) eZ+k/pxnt'/4p
and

(p,u) € Z + F—I;(Ti 1—56n7‘r + 4.—];0n1_r0'i i—L‘rn‘H cZ+ gai gn”.
Therefore, we obtaifo, u) € Z + ko/p + 1/(2p) and decrypp into o~ without decryption errors. m]

3.3 Security of mMADggH

We next prove the security of mAdgH. Let Upwy be a uniform distribution o?(W). We denote the
encryption function of ARy by E defined as a random variabto, (V, W.i1)) for a plaintexto- and a
public key ,W.i;). If the public key is obvious, we abbrevial{o, (V, W.i1)) to E(c). Similarly, the
encryption functiorky, is defined for mARgH.



First, we show that the indistinguishability between two certain distributions is based on the worst-case
hardness of uSVP. The following lemma can be obtained by combining Thé&gend the results ing]
and [L3] with our generalization.

Lemma 3.6 ([6, [13]). If there exists a polynomial-time distinguisher betwg&{0), (V,W,i;)) and
(Upw, (V, W,i1)), there exists a polynomial-time algorithm for the worst case @f ©)-uSVPfor r > 7.

We next present the indistinguishability between the ciphertexts of 0 in gafRNdUpw).

Lemma 3.7. If there exists a polynomial-time algorith; that distinguishes betwedim(0), (V, W,i}))
and (Upw), (V,Wi})), there exists a polynomial-time algorithrD, that distinguishes between
(E(0), (V, W.i1)) and (Upw), (V, W.i1)).

Proof. We denote by(n) the non-negligible gap of the acceptance probabilityafbetweenE,(0) and
Upw) With its public key. We will construct the distinguish€x, from the given algorithn®;. To runD;
correctly, we first find the indeX by estimating the gap of acceptance probability betvgg®) andUpw)
with the public key. If we can find,, we output the result ab; usingi; with the public key. Otherwise, we
output a uniformly random bit. For random inputs of ciphertexts and public keys, the above procedure can
distinguish between them.

We now describe the details @, as follows. We denote by and {/,W,i1) a ciphertext and a public
key of ADggH given as an input foD,, respectively. Also, lepy = Pr[D1(Em(0), (V, W, j)) = 1] and
pu = PriO1(Upw), (V,W, j)) = 1], where the probabilitypo is taken over the inner random bits of the
encryption procedure angl; is taken ovetpw).

(D1) For everyj € {1,...,m}, we runD1(Em(0), (V, W, j)) and D1(Upw), (V, W, j)) T = n/e? times. Let
xo(j) and xy(j) be the number of 1 in the outputs 6§, for the ciphertexts of 0 and the uniform
distribution with the indey, respectively.

(D2) If there exists the index such thaixo(j’) — xu(J)I/T > &/2, we takej’” as the component of the
public key.

(D3) We outputD1(x, (V, W, j)) if we find j’. Otherwise, we output a uniformly random bit.

Note that we havépo — xo(j’)/T| < e/4 and|py — xu(j’)/T| < &/4 with probability exponentially close to
1 by the Ho&ding bound|L7]. Therefore, we succeed to choose the inflexith which D1 can distinguish
between the target distributions with probability exponentially close tg’leikists. By the above argument,
D1 works correctly for a non-negligible fraction of all the inputs. O

The next lemma can be proven by the hybrid argument.

Lemma 3.8. If there existor1,05 € {0, ..., p— 1} and a polynomial-time algorithrD3 that distinguishes
betweenEm(cr1), (V, Wi/)) and (Em(c2), (V, W,i7)), there exists a polynomial-time algorithy, that dis-
tinguishes betweefEnm(0), (V, W i7)) and (Upw), (V; W i7)).

Proof. By the hybrid argument, the distinguish®g can distinguish betweef,(o1) andUpw) or between
Em(o2) andUpw) with its public key. Without loss of generality, we can assume fhatan distinguish
betweenEm(c1) andUpw) With its public key. Note that we havém (o1, (V, Wi7)) = Em(0, (V, Wi})) +
S vi, modP(W) by the definition ofEn. Then, we can transform a givenfrom Em(0, (V, Wi7)) to an-
other sampley from Ey(o1, (V,W,i7)). We can therefore obtain the polynomial-time algorittipg that
distinguishes betweerkf,(0), (V, W.i7)) and Upw), (V; W i})). |
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By the above three lemmas, we obtain the security proof for our multi-bit versionggAD

Theorem 3.9. If there exist plaintexts, 0 € {0, ..., p— 1} and a polynomial-time algorithm that distin-
guishes between the ciphertextgrafando, of MADggH With its public key, there exists a polynomial-time
algorithm for the worst-case of @ *#)-uSVPfor r > 7.

3.4 Pseudohomomorphism of mARgH

As stated in Theorei.4 mADggH has the pseudohomomorphic property. To demonstrate this property,
we have to evaluate the decryption errors for sum of ciphertexts and prove its security.

Decryption Errors for Sum of Ciphertexts. First, we evaluate the decryption errors when we apply the
decryption procedure to the sum of ciphertexts in m#&R. Recall thatZ + a ;.= {x € R : frc(X) < a} for
a>0andZ+a+b:={xeR:frc(x—a) <b}forab>0.

Theorem 3.10.Let r > 7 be any constant. Also let p be a prime arloe an integer such thafp < n~’. For
anyx plaintextsoy, ..., o (0 < oj < p—1), we can decrypt the sumetiphertextsy ;i ; Em(ci) mod P(W)
into 33i; o7 mod p without the decryption errors.

Proof. We defineos, ..., p, as ciphertexts ofr1, ..., o, respectively. We will show that we can decrypt
p = 2 pi modP(W) into 3 ; oy mod p. From the proof of Theoref8.5 we have

3 7—r'

k
<pi,U>EZ+ F—)O’iign

Hence, we obtain

i=1

K k K 3 -
E i Z —E P £ = .
< p.,u>€ + pi:10',+8/<n

Combining with the facp; € (W) andkp < n"~’/, we have

H+

kK < 3 1 K < 1 K < 1
PUWeEZ+— > oit=knN"" kT CZ+= ) oit=knN""CZ+= ) ot —.
p; '"8 p; 'T2 pz '

4

Therefore, we correctly decryptinto 3 ; oy mod p. m|

Security for Sum of Ciphertexts. We can also give the security proof for the sum of ciphertexts in
MADggH. The security proof obeys so general framework that we can apply the same argument to the
security of sum of ciphertexts in the other multi-bit versions mR04, mR05, and m&B%convenience of
the other multi-bit versions, we here present an abstract security proof for sum of ciphertexts. We denote
the encryption function of our multi-bit cryptosystemsbBy, also regarded as a random variaBjg(o-, pK)
for a plaintexto- and a public keypk. If the public key is obvious, we abbrevidig, (o, pK) to Em(o). LetC
be the ciphertext space ahig be the uniform distribution o@.

We first show that it is hard to distinguish between the sum of ciphertexts and the uniform distribution
if it is hard to distinguish betweensamples front,(0) and those front.

10



Lemma 3.11. If there exist two sequences of plainteids, ...,o,) and (o7, ..., o) and a polynomial-

time algorithm D, that distinguishes betweef}.[_; Em(ci), pk) and (3;_; Em(c7), pK), then there ex-

ists a polynomial-time algorithmD, that distinguishes betweer ciphertexts and its public key
(Em(O, pK), ..., En(0, pk), pk) and uniformly random ciphertexts and the public kéyc, ..., Uc, pK).

Proof. By the hybrid argument, the distinguish®r can distinguish betweeR;_; En(ci) andU¢ or be-
tween},;_; Em(o7) andUc with its public key. Without loss of generality, we can assume fxatan distin-
guish betweenX;_; Em(c), pk) and Uc, pK). By (o1, ..., %), we can transformm(c1), . . . , Em(o), pK)
into (2i_; Em(ci), pK). This shows the polynomial-time distinguish®s. O

As already stated in Sectidh(and LemmdB.4in the case of Alggy), the original security proofs of
ADggH, R04, RO5 and AO5 show that we hav@@ent algorithms for certain lattice problems if there is an
efficient distinguisher betweds,(0) andU with its public key. By the similar argument to that in original
proofs, we also have such algorithms froffi@ent distinguishe, between En(0),..., Em(0), pk) and
(Ug,...,Uc, pK. Thus, we obtain fron?, in Lemmal3.11 a probabilistic polynomial-time algorithi
that solve the worst case 6{(n"*4)-uSVP in the case of mMAE:H.

By combining the above discussion with Lem@41, we guarantee the security of the sum of cipher-
texts in MADsGH.

Theorem 3.12.If there exist two sequences of plaintéxt, ..., o) and (o, ..., o) and a polynomial-
time algorithm®; that distinguishes betwed},;_; Em(ci), pK) and (2i_; Em(c7). pK), then there exists
a probabilistic polynomial-time algorithnA that solves the worst case of(i®94)-uSVP in the case of
MADgGH.

4 Concluding Remarks

We have developed a universal technique for constructing multi-bit versions of lattice-based cryptosys-
tems using periodic Gaussian distributions and revealed their pseudohomomorphism. In particular, we have
showed the details of the multi-bit version of the improved Ajtai-Dwork cryptosystem in S&tion

Although our technique achieved only logarithmic improvements on the length of plaintexts, we also
obtained precise evaluation of the trad&sdetween decryption errors and the hardness of underlying lattice
problems in the single-bit cryptosystems. We believe that our evaluation is useful for further improvements
of such single-bit cryptosystems.

Another direction of research on lattice-based cryptosystems is to find interesting cryptographic appli-
cations by their algebraic properties such as the pseudohomomorphism. Number-theoretic cryptosystems
can provide a number of applications due to their algebraic structures, whereas lattice-based ones have few
applications currently. For demonstration of the cryptographic advantages of lattice problems, it is important
to develop the algebraic properties and their applications su¢ths [
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A A Multi-Bit Version of the Regev’04 Cryptosystem

A.1 The Regev'04 Cryptosystem and Its Multi-Bit Version

In this section, we consider the Regev cryptosystem R04 propos@dlirjoughly speaking, the ciphertexts
of 0 and 1 approximately corresponds to two periodic Gaussian distributions in R04. (See Bignd&s)

We now denote the distributions of the ciphertexts of 0 and ®@and®1, respectively. Note that every
peak in®; is regularly located in the middle of two peaksdny. A parameteih is approximately equal

to the number of peaks iy, and a private keyl, obtained fromh, corresponds to length of the period.
A public key is of the form &, ..., am,i0), whereay, ..., an are samples frondg to make a ciphertext of

0 by summing up randomly chosen elements from the samples and a certaingirdé€k . .., m} is used

to shift a ciphertext of O to that of 1 by addirag, /2 to a ciphertext of 0. One can easily see that we can
distinguish betweedy and®4 with d. It however seems hard to distinguish them only with polynomially
many samples obg andip. Actually, it is shown in[B4] that breaking R04 is at least as hard as the worst
case of a certain uSVP.

Prob. #peaks = h Prob. #tpeaks ~ A
/ . . \
] H i
\ ; R - 2 U I R O A
. § |
\ / “\ I / i
\__/ N/ \ _/ H
0 "T" 28r12 0 "T" 28n
Figure 4:ciphertexts of 0 in RO4 Figure 5:ciphertexts of 1 in RO4

In what follows, we precisely describe the original RO4. We begin with the definition of a folded
Gaussian distributio¥’,, whose density function i¥,() = Yyz(1/a) expEr((l — k)/a)?). This distri-
bution is obtained by “folding” a Gaussian distributid{0, ?/(2r)) on R into the interval £1/2,1/2).

Note that this folded Gaussian distribution is equivalent with the fractional pi{@#x?/(2r)). Based on
this distribution, R0O4 makes use of a periodic distributiy), defined by the following density function:
®p,o(l) = Yo (lh mod 1). We can sample values according to this distribution by using samplefypas
shown in B4]: (1) We samplex € {0,.. ., [h]} uniformly at random and then (2) sampl@ccording to¥,,.
(3) If 0 < (x+Yy)/h < 1, we then take the value as a sample. Otherwise, we repeat (1) and (2).

LetN = 28" m = con? for a suficiently large constarty, andy(n) = w(n+/logn), specifying the size
of the ciphertext space, the size of the public keys, and the variance of the folded Gaussian distribution,
respectively. In this section, we require precision ﬁﬂgfz = 1/N for rounding real numbers.

Preparation: All the participants agree with the security parametand the precision‘f”z.

Key Generation: LetH = {h e [VN,2+VN) : frc (h) < 1/(16m)}. We choosé € H uniformly at random
and sed = N/h. The private key is the number Choosinge € [2/y(n), (2 V2)/y(n)), we sample
mvaluesz, ..., Zy from the distribution®y, ,, wherez = (x + yi)/h (i = 1,..., m) according to the
above sampling procedure. Lagt= [Nz] for everyi € {1,..., m}. Note that we have an indéxsuch
thatx;, is odd with a probability exponentially close to 1. Then, the public kegis. (., am, io).
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Encryption: We choose a uniformly random sub&eof {1, ..., m}. The ciphertext i$ ;s & modN if the
plaintextis 0, and}ics & + ai,/2]) modN if it is 1.
Decryption: We decrypt a received ciphertexte {0,...,N -1} to O if frc (w/d) < 1/4 and to 1 otherwise.

Summarizing the results iiBf]] on the size of plaintexts, ciphertexts, and keys, the decryption errors,
and the security of R04, Regev proved the following theorem.

Theorem A.1 ([34]). The cryptosysterR04 encrypts al-bit plaintext into an8n?-bit ciphertext with de-
cryption error probability at mosp-20*(M/m 1 -2 The security oR04is based on the worst case of
O(y(n) vn)-uSVP. The size of the public key i) and the size of the private key i§r®).

We next propose a multi-bit version mR04 of the cryptosystem RO4pbeta prime such that2 p <
n" ands(n) = w(n**" v/logn) for any constant > 0, where the parametercontrols the tradef® between
the decryption errors (or the size of plaintext space) and the hardness of underlying lattice problems. Our
cryptosystem mR04 can encrypt onegxblaintexts in{0, ..., p— 1} into a ciphertext of the same size as one
of ROA4.

As mentioned above, R04 relates the ciphertexts to two periodic Gaussian distrildgiand®; such
that each of them has one peak in a period of lenigt®ur construction follows the argument in Secfin
The idea of our cryptosystem is embeddinggferiodic Gaussian distributiondy, . .., ®,_; corresponding
to the plaintextg0, . .., p— 1} into the same period of length We also adjust the parameterwhich &fects
the variance of the Gaussian distributions, to bound the decryption errors. Note {mialiso dfects the
decryption errors. Therefore, adjusting the Hesimultaneously withy, we have to reduce the decryption
errors by frah). Based on the above idea, we describe our cryptosystem mR04 as follows.

Preparation: All the participants agree with the parametarandr, the precision 2" and the sizep of
the plaintext space.

Key Generation: Let H; = {h € [VN,2VN) : frc(h) < 1/(8n'm)}. We chooseh € H, uniformly at
random and set = N/h. Choosinge € [2/6(n), (2 V2)/6(n)), we samplem valuesz, . . ., z, from
the distribution®y ., wherez = (X +y;)/h (i = 1,..., m) according to the above sampling procedure.
Leta = [Nz] for everyi € {1,..., m}. Additionally, we choose an indeg uniformly at random from
{i 1 x # 0 modp}. Then, we computé& = X; mod p. The private key isd, k) and the public key is
(@, ... > am,lg)-

Encryption: Leto € {0,..., p— 1} be a plaintext. We choose a uniformly random sulssef {1,..., m}.
The ciphertext i Yics & + |oa;, /p|) modN.

Decryption: For a received ciphertext € {0,...,N — 1}, we computer = w/d mod 1. We decrypt the
ciphertextw to | pr1k ! mod p, wherek1 is the inverse ok in Z,.

Before evaluating the performance of mR04 precisely, we give the summary of the results as follows.

Theorem A.2. For any constant t> 0, lets(n) = w(n**" y/logn) and let g{n) be a prime such that < p(n) <

n'. The cryptosystemmRO04 encrypts allog p(n)-bit plaintext into an8n?-bit ciphertext with decryption

error probability at most2-(EM/m*m) 42— The security omR04is based on the worst case of
O(5(n) 4/n)-uSVP. The size of a public key is the same as that of the original one. The size of a private key
is [log p(n)] plus that of the original one.

For example, setting(n) = n**" logn for any constant > 0, we obtain anr lognJ-bit cryptosystem with
negligible decryption error, whose security is based on the worst-cad@b¥*" logn)-uSVP.
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Theorem A.3 (pseudohomomorphism)Let §(n) = w(n'*" {/logn). Also let n) be a prime and an
integer such thakp < n" for any constant r> 0. Let B, be the encryption function shR04 For any

k plaintextsoy,...,o (0 < o < p— 1), we can decrypt the sum efciphertextsy;; ; Em(ci) modN
into 3, oy mod p with decryption error probability at mo-(@M)*/"m - Moreover, if there exist two
sequences of plaintex¢s, ...,o,) and (o7, ..., 0y), and a polynomial-time algorithm that distinguishes
betweer};;_; Em(ci) modN and}_; Em(c{) mod N with its public key, then there exists a polynomial-time
algorithm that solves @(n) 4/n)-uSVPin the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mR04 stated in the above theorems.

A.2 Decryption Errors of mR04

We first give the analysis of the decryption errors.
Theorem A.4. The probability of the decryption errors inR04is at mosg-(e*/(*m) | o-a)

We omit the proof of the decryption errors since it can be done by a quite similar analy84] t;mfl we
will prove the generalized theorem (Theori@nd) in AppendiXA.4l

A.3 Security of mR04

In what follows, we evaluate the security of our cryptosystem mR04. We first mention the re34jjttihdt
the indistinguishability of two certain distributions is guaranteed by the hardness of a certain uS\UR. Let
andU; be the uniform distributions ovg0, ..., N — 1} and [Q 1), respectively.

Lemma A.5 ([34]). If there exists a polynomial-time distinguisher betwegy, and U; over uniformly
random choices of ke [ VN, 2VN) anda € [2/8(n), 2V2/5(n)), there exists a polynomial-time algorithm
for the worst case of (3(n) v/n)-uSVP.

Thus, our task is to prove the security of our cryptosystem mR04 from this indistinguishability. For
convenience of the proof, we introduce a parameterized versiohd@de cryptosystem R04. In the key
generation procedure of RQ4ve sampleh from H, = {h € [ VN, 2VN) : frc (h) < 1/(8n"m)} anda from
[2/6,2+/2/6) uniformly at random. The other procedures in R&#e the same as R04. Similarly to the
case of R04, we can show that the indistinguishability between the ciphertexts of 0’iu04y can be
guaranteed by the indistinguishability betweky), andUy.

Lemma A.6. For any constant > 0, let p be a prime such th& < p < n" andé(n) = w(n**" +/logn). If
there exists a polynomial-time algorithm that distinguishes between ciphertéxits BD4 and Uy with its
public key, there exists a polynomial-time algorithm betw@&gp and U; over uniformly random choices of

h e [ VN, 2VN) anda € [2/5(n), 2V2/5(n)).

This lemma can be proven by the same wayli3} {ising the fact that @ m € poly(n). By the same
technique as the security proof of maBy, we obtain the following lemma.

Lemma A.7. If there exist plaintexts1, 0> € {0,..., p— 1} and a polynomial-time algorithm that distin-
guishes between the ciphertextsogfand o, in mRO4with its public key, there exists a polynomial-time
algorithm that distinguishes between the ciphertex@iafR04 and Uy with its public key.

By the above lemmas, we can show the security of mR04 based on the hardness of uSVP.
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Theorem A.8. If there exist plaintexts-1, 02 € {0,..., p— 1} and a polynomial-time algorithm that distin-
guishes between the ciphertextsogfand o, in mRO4with its public key, there exists a polynomial-time
algorithm for the worst-case of @(n) v/n)-uSVP.

A.4 Pseudohomomorphism of mR04

Decryption Errors for Sum of Ciphertexts.

Theorem A.9 (mMR04) Letd(n) = w(n'* y/logn). Also let gn) be a prime and be an integer such
thatxp < n" for any constant r> 0. For any« plaintextsos,...,o (0 < o < p— 1), we can decrypt
the sum ok ciphertextsy. ; Em(cij) modN into 337 ; oy mod p with decryption error probability at most
2-Q((8(M)?/n*'m)

Before the proof, we need the following lemma given3d][to bound the tails of Gaussian distributions.

Lemma A.10([34]). The probability that the distance of a normal variable with varianéefrom its mean
is more than t is at mos{/g% exp(—z%), ie.,

20 t2
X—pul >t ZZ expl-=—|.
X~ N(,m2) X =ul >t < \/;t p( 202)

By LemmdA.1T, one can see easily thauif< 1/ y/n, the probability Pg_y .2 [IX| > 1/2] is exponentially
small inn.

Proof. The proof is similar to the estimation of the decryption errors34l.[ First, we show the case that
we havex ciphertexts of Ops, ..., p. The probabilities are taken over the choices of the private and public
keys and the inner random bits of the encryption procedure.Sket ., S, denote the subsets of indices

used in the encryption procedure, i@.= 3 jcs @j modN. Letp := 31, pj modN. Thus,
0 - [; {JZS: aj modd Lh]] moddLhT] < mk|N —dh]| = mkd - frc (h) < %d.

Similarly to the argument for evaluation of the decryption error&3#j,[we obtain

frc(p) . [zle(zjesi & modd h) moddLm]

d/  8n' d
_ kK zx;lzhesiaj
_8nf+frc(—d )
<%+ +frc[ ZZZJ}

n i=1 jeS;

Sincez; = (xj +yj)/handd = N/h,

frc[ Z > z,] = frc [Z Z(xj + yj)J = frc [Z Zyj].

i=1 jeS; i=1 jeS; i=1 jeS;
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Hence, we have

fro(5) < o7+ —+frc[ZZyJ] = +frc(ZZy,J,

i=1 jeS; i=1 jeS;

where we used the fact thdt= 204 is much larger tham = con2. All x; are strictly less thafih] — 1
with probability exponentially close to 1. Conditioned on that.. .., yn are distributed according t#,.

Therefore, we have
1
frc(z Zy,] > —} < Pr{frc Zky,] 16p .

i=1 jeS;
The distribution OfZT;l kyj mod 1is¥ s, Since vmka = O(55y 6(n)) we obtain

frc[z Zy,] > o5

i=1 jeS;

Pr

Pr < 2-QAEM/mep?) < - QM) /P m)

by LemmdA. I3 We thus obtain fr€o/d) < 1/(4p), which implies that we can decryptto O with decryp-
tion error probability at most-S2(EM)?/mr)

Next, we considex ciphertext’, ..., o, of plaintextsory, ..., o, respectively and set := 31, pi mod
N. From the encryption proceduig, = pj + [aiaié/p] mod N. By using the fact that = Xir mod p and that
with probability exponentially close to ¥, € Z + 1/(8n"), we get|ay /p| /d € Z + k/p + 1/(8pf) + 2/d.
Hence, we hav%a-ia,-é/pw /d e Z+ oik/p+1/(8n") + 2/d. This implies that

O-Ial/p 2«
Sl g S

=)
Since fre(p/d) < 1/(4p), we obtain

’

0 K v 1 K K+1 2K
EGZ-FE);O-iiE)iSnV_Bnr Z+—20'|i—

with the probability at most 2XCEM?*/m™) which completes the proof. O

Security for Sum of Ciphertexts. By similar argument in Sectid8.4, we obtain the following theorem.

Theorem A.11. If there exist two sequences of plaintéxt, ..., o) and (o7, ..., 0}) and a polynomial-
time algorithm®; that distinguishes betwedd’;_; Em(ci), pK) and (3;_; Em(c7), pK), then there exists a
probabilistic polynomial-time algorithn# that solves the worst case ofd@n) v/n)-uSVPin the case of
mR04

B A Multi-Bit Version of the Regev’05 Cryptosystem

B.1 The Regev’05 Cryptosystem and Its Multi-Bit Version

The cryptosystem RO5 proposed in 20@g|[is also constructed by using a variant of Gaussian dis-
tributions. A folded Gaussian distributioH, over [-1/2,1/2) is given by a density functio®,(I) =
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Svez(1/@) expEr((l — K)/@)?). Letm = 5(n + 1)(2logn + 1) = ©(nlogn) andq(n) € [N, 2n?] be a prime.
The parameterr = «a(n) satisfying conditions that(n) = o(1/(+/nlogn)) anda(n)g(n) > 2+/n is used
to control the variance of the distributioH,. (In [35], « is set to ¥(+v/nlog?n).) We also describe the
discretized distribution oZq from ¥,,. The Gaussian distributiod, onZq is obtained by sampling from
Y., multiplying g, and rounding the closest integer modgloThe distribution can be formally defined as

(1+1/2)/q
(1) = [ W, (x)dx

La/p]

#peaks = P

Figure 6:cryptosystem R0O5 Figure 7:multi-bit version of R05

In RO5, the ciphertexts of 0 and 1 are vector&jobtained from some Gaussian distributions, which
are specified by vectoms, ..., ay, shared among all the participants in the preparation procedure. Every
coordinatei of the ciphertext of O corresponds to a Gaussian distributiodpwith mean(a;, s for the
private keys. On the other hand, the ciphertext of 1 corresponds to the “opposite” Gaussian distribution.
(See Figuré®)

Preparation: All the participants agree with the security parametethe variance-controlling parameter
a, and the precision?2. They also sharmvectorsay, ..., an chosen fron%g uniformly at random.

Key Generation: The private keys is chosen uniformly at random fro@y. We also choosey, .. ., e
according to the distributio®,. Letb; = (a,s) + g for everyi € {1,...,m}. The public key is

Encryption: We choose a uniformly random sub&:of {1,...,m}. The ciphertext i) ics &, Yics bi) if
the plaintextis 0, an@}ics &, [q/2] + Yies by) ifitis 1.

Decryption: We decrypt a received ciphertext b) € Zg X Zq into 0 if |(b — (a,s)) mod | < g/4, and into
1 otherwise, wherg- | is the absolute value function &, i.e.,|x| = min{x,q — X} for any x € Zq.

Note that the security reduction of RO5 is done by a polynomial-time quantum algorithm. In other word,
if RO5 is insecure, there exists a polynomial-time quantum algorithm for certain lattice problems. As shown
in [35), the cryptosystem RO5 has the following performance.

Theorem B.1([35]). The cryptosysterR05 encrypts al-bit plaintext into an(n + 1)[logq]-bit ciphertext
with decryption error probability at mo~ (/) 4 2-2  The security oRO5is based on the worst
case 0fSVPs /o) aNd SIVPs oy for polynomial-time quantum algorithms. The size of the public key
is O(nlog? n) and the size of the private key igrQogn).
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We now give our cryptosystem mR0O5 based on R05. (See Hfjutetr € (0, 1) be any constant, which
controls the trade{d between the size of plaintext space and the hardness of underlying lattice problems,
and p be an integer such that < n" = o(n), which is the size of the plaintext space in mR05. mR05 can
encrypt a plaintext if0, . . ., p— 1} into a ciphertext of the same size as R05. We use the same parameters
andg as R05 and introduce a parameget 8(n) = a(n)/n" = o(1/(n®>*" logn)) to control the distribution
instead ofx in RO5. The parametgd(n) must satisfyB(n)q(n) > 2+/n.

Preparation: All the participants agree with the parametarg, the precision 2", and the sizep of the
plaintext space. They also shamesectorsay, . . ., am chosen froniZg uniformly at random.

Key Generation: This procedure is the same as R05 except that we saenple, ey, from dp.

Encryption: We choose a uniformly random sub&eof {1, ..., m}. For a plaintext- € {0,..., p— 1}, the
ciphertextiS(Yics &, loa/pl + Zies bi).

Decryption: We decrypt a received ciphertefe, b) to | (b — (a, s)) p/q] mod p.

Before evaluating the performance of mRO5 precisely, we give the summary of the results as follows.

Theorem B.2. Let p= p(n) be an integer such that(p) < n" for any constan® < r < 1. The cryptosystem
mRO5encrypts aélog p(n) |-bit plaintext into an(n+1)[log q]-bit ciphertext with decryption error probability

at most2-A(LMEM™) 4 2-Q  The security omRO5is based on the worst case 8% Ps(n(m) and
SIVPsnmy for polynomial-time quantum algorithms. The size of the public key and private key is the
same as that of the original one.

For example, by setting(n) = n" for a constant & r < 1 ands(n) = 1/(n®>*" log? n), we obtain gr logn|-
bit cryptosystem with negligible decryption error whose security is based og@V¥R and SIVR;15.1.

Theorem B.3(pseudohomomorphism)et p(n) be an integer and be an integer such thatp < n' for
any constan0 < r < 1. Let B, be the encryption function ohR05 For any « plaintextsoy, ..., oy

(0 < oj < p- 1), we can decrypt the sum efciphertextsy;; ; En(o) into }.i_; o mod p with decryp-
tion error probability at mos-/M* M) \where the addition is defined OVE} X Zq. Moreover, if there
exist two sequences of plaintets, . .., o) and(c, . . ., o), and a polynomial-time algorithm that distin-
guishes betweel;_; Em(ci) and };_; Em(o) with its public key, then there exist polynomial-time quantum
algorithms that solv&VRs, 5y @and SIVPs, 5y in the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mRO5 stated in the above theorems.

B.2 Decryption Errors of mR05

We first estimate the decryption errors in our cryptosystem mRO05. By replacing the pararirefd5 to
the parametes in mR0O5, we immediately obtain the evaluation of the decryption errors from ThdldrE
The generalization of this theorem (TheorBg) is also given in AppendiiB.4

Theorem B.4. The probability of the decryption errors mRO5is at mos~/(Msmn™) ;. o)

B.3 Security of mR05

We next discuss the security of our cryptosystem mRO5. Wsgfs be the uniform distribution over the
ciphertext spac&g x Zq of RO5 (and mRO05). The strategy of the security proof for mRO5 is similar to
mRO04. We first mention the result iB%] that the indistinguishability between the ciphertexts of 0 in R05
andURggs is guaranteed by the worst-case hardness of certain lattice problems.
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Lemma B.5([35])). If there exists a polynomial-time algorithm that distinguishes between the ciphertexts of
0in RO5and Uggs with its public key, there exists a polynomial-time quantum algorithm for the worst case
Of SVP@(H/Q(H)) a.nd SIVP@(n/Q(n)) .

We now consider a slightly modified version RG&ith the distribution parameted(n) = a(n)/n" =
o(1/(n%>*" log n)) instead ofa(n) in RO5. Since the tradeftbetween the decryption error and the security
of RO5S is obtained by Theoref.1, we can show the following lemma by the same technique as the security
proof of MADggH.

Lemma B.6. If there exist plaintextsr1,02 € {0,..., p— 1} and a polynomial-time algorithm that distin-
guishes between the ciphertextsogfand o, in mRO5with its public key, there exists a polynomial-time
algorithm that distinguishes between the ciphertex®iofR05 and Urgs with its public key.

By these lemmas, we can obtain the security of our cryptosystem mRO5.

Theorem B.7. If there exist plaintextsr, 0> € {0,..., p — 1}, and a polynomial-time algorithm that dis-
tinguishes between the ciphertextoaf and o> in mRO5with its public key, there exists a polynomial-time
quantum algorithm for the worst-case 8¥/Pg /5y and SIVP5( 5 -

We omit the proof of the security since it is quite similar to mady.

B.4 Pseudohomomorphism of mR05
Decryption Errors for Sum of Ciphertexts.

Theorem B.8(mRO05) Lets(n) = o(1/(n°>*" logn)). Also let gn) be an integer ana be an integer such
that kp < n" for any constanD < r < 1. For any« plaintextsos,...,o, (0 < oj < p - 1), we can
decrypt the sum of ciphertextsy i ; Em(o7) into 331 ; o mod p with decryption error probability at most
27/, where the addition is defined ovE} x Zq.

Proof. The proof is similar to/35]. First, we estimate the decryption errors for the sum ofphertexts

of 0, (o1,v1),..., (0w k). The probabilities are taken over the choices of the private and public keys and
the randomness of the encryption procedure. $£t.., S, denote the subsets of indices used in the en-
cryption procedure, i.e.p(, vi) = (Xjes; @), 2jes; bj). Let (o,v) = (XL, pi, 2i_q vi). Recall that we obtain
i1 Zies € = v —{p,s) in the key generation. We will show

ZZQ modq

i=1 jeS;

N qu pJ} < 2 QUEP)) (1)

whereey, .. ., g are samples from the distributidry and|x| := min{x, q—x} for x € [0, q—-1). A sample from
@z can be obtained by samplingfrom ¥ and outputtindqx 1 modg. Notice thaty’;_; > jes; [qu] modq

is at mostmk < q/(16p) away from3.[_, ¥ s, 9% modq for suficiently largen. Therefore, it is sflicient
to show

K

PP

i=1 jeS;

Pr

q -Q(1/(mp?n2")
>—10<?2 ,
le]
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wherexy, ..., X, are independently distributed accordingig. That is, it is sificient to show

- 1 r
frc [Z Z Xi] > ﬁ):i < 2_9(1/(m62n2 ))

i=1 jeS;

Pr

Similarly to the argument in Theored 9, we obtain

frc[ZK:in] > %’

i=1 jeS;

Pr <Pr

m

1 r

frc [Z KXj] > K‘ < 27 QM) < o= Q1L/mpPn)
=1 P

It follows that we can decrypp(v) into 0 with decryption error probability at most %/ (ms*n)),

Next, we considek ciphertexts §7,v7)...., (o v,) of plaintextscy, ..., o, respectively. We now set
(0, V') = (X1 p{, Xi=q V). By the encryption procedure; = vi+|oiq/pl. Therefore, we have' —(o’, s) =
Yic1 Zjes € + XLy Loig/pl. Combining the equatiofly and the fact tha|t2f:1 Loia/pl - X oid/ p| <
k < |a/pl /4, we decryptd’, v") into $_; o mod p with decryption error probability at most2®/(m*n*)),

o

Security for Sum of Ciphertexts. By similar argument in Sectid®.4, we obtain the following theorem.

Theorem B.9. If there exist two sequences of plaintéxt, ..., o) and(c7,...,0%) and a polynomial-
time algorithm®; that distinguishes betwedi;_; Em(ci), pK) and (3;_; Em(c7), pK), thenthere exists a
polynomial-time quantum algorithm for the worst cas&Wls o)) aNASIVPg /o) in the case oMR0S

C A Multi-Bit Version of the Ajtai Cryptosystem

C.1 The Ajtai Cryptosystem and Its Multi-Bit Version

Let b be a uniformly random string dd(n? logn) bits andt be a random string ad(nlog n) bits specified
later. We denote byrg‘) a Gaussian distribution on ardimensional Euclidean space with me@mand
standard deviatiors. The density function is given bg/s”)(x) = s "exp(n|x/g[?). Note that, given an
orthonormal basis far", V(S”) can be written as the sumbrthogonal 1-dimensional Gaussian distributions
along one of the basis vectors. For instance, given a l@sis ., en}, v(s”)(x) = [1iL,(1/9) expnr(xi/9)?)
foranyx = Y1, xe.

Ajtai showed how to generate a certain classfii€ently representable lattices related to hard problems
in [4]. He also succeeded to construct two lattice-based cryptosystems based on the original Ajtai-Dwork
cryptosystem@] and the improved Ajtai-Dwork cryptosysterd]. The latter one reduces decryption error
from the former one by the idea @tJ]. In this section, we only describe the former one, which is related to
security of our cryptosystem.

In the Ajtai cryptosystem AO5, we make use of a periodic Gaussian distributi®fi sach that its peaks
are located on the points of the dual lattice spanned by a Basfsan instance.(b, t) of uSVP obtained
in the preparation procedure. Then, the periodic Gaussian distribution looks like a “wave” going along the
shortest vectou of L(b, t) since the dual lattice df(b, t), which is an instance of uSVP, has a much longer
interval between twor(— 1)-dimensional sublattices orthogonaltohan others. (See FiguB) Then, the
ciphertexts of 0 correspond to the periodic Gaussian distribution mge{iHpand those of 1 correspond to
the uniform distribution orP(F) in the cryptosystem A05. Similarly to the previous cryptosystems, if we
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Figure 8:ciphertexts of 0 in A05

know u, we can easily decrypt a received ciphertext by the inner product between the ciphertextigdmd
high probability.
We now describe the details of the Ajtai cryptosystem A05. All the participants share a probabilistic
polynomial-time algorithnm®D, a deterministic polynomial-time algorith#, and a uniformly random string
b. In the preparation procedur®,generates a random stringnd a vectou in a latticeL (b, t) from b. Also,
B generates a basigb, t) of the latticeL (b, t) if stringsb andt are given. Then, the probability thiafh, t) is
an instance of/2*"-uSVP andu is its unique shortest vector such timat/? < |jul| < n™"/2 is exponentially
close to 1. Now leF = (f1,...,fn) be a basis of the dual lattice &{b,t). We also denote b¥yr) the
uniform distribution orP(F).

Preparation: All the participants agree with the security parameteand share the algorithnfs, © and
the random stringp.

Key Generation: We giveb to the procedur®, and then obtaihandu. Then, the private key is and the
public key ist.

Encryption: Leto € {0, 1} be an encrypted plaintext. ¢f = 0, we choose from a Gaussian distribution
on then-dimensional Euclidean space given by the density funotii(x) = exp(-x ||x||?). We then
sety = (Y1,...,yn)' = zmod®P(F). If & = 1, we choose/ from the uniform distributiorlp(F).
These operations for real numbers are done with precisiBfi®?. The ciphertexiy = (V1,...,¥n)"
is obtained by rounding with precision of ¥n, i.e., we havay; — yi| < 1/nfor everyi € {1,...,n}.

Decryption: We decrypt a received ciphertexto 0 if frc ((y, uy) < &+/logn|jul| and to 1 otherwise, where
¢ is a constant given ifd]. This operation is also done with precisior®9".

Summarizing the results on A05, he mentioned the following theorerd]in $ince the ciphertexts
of AO5 are rounded with precision of/d and use a compact representation of lattices, the ciphertexts
and the keys can be representedQiylogn) bits. For the definition of the underlying problem DAee
AppendixEl

Theorem C.1([4]). The cryptosysterA05 encrypts al-bit plaintext into an @nlogn)-bit ciphertext with
decryption error probability at mogD(n~"/3). The security oA05 is based on the average casduf’. The
size of the public key and the private key i@@gn).

We show the multi-bit cryptosystem mAO5 as follows. Rdte the length of the unique non-zero shortest
vectoru, i.e.,A = ||u||. We generalized the standard deviatiomafimensional Gaussian distribution in en-
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cryption procedure for the sake of a discuss of a pseudohomomorphism. \t\g@(@e: s expln|x/s?)
instead of" in the original cryptosystem. If we sst= 1, the security of our cryptosystem is based on the
security of the original one. We suppose th@at) = w(+/logn) is a parameter to control a tradé-between
decryption errors and size of plaintexts aryeh is the precision of rounding in the encryption procedure as
same as in the original. To guarantee the decryption errors, we suppose-that/n(n). Let a primep be

the size of plaintext space such thgag n/®/(4sp(n)). Note thatp < 1/(4 Vasy(n)).

Preparation: All the participants agree with the parameterands, and the size of the plaintext space.
They also share the algorithris © and the random strinly.

Key Generation: This procedure is the same as that of AO5 except that we add aniinciesen uniformly
atrandom fromi : (fi, u) # 0 mod p} to the public key ané = (f;,, u) mod pto the private key. Thus,
the private key isy, k) and the public key ist(i1).

Encryption: Leto € {0,..., p— 1} be a plaintext. We choosefrom the Gaussian distributiori”). Then,
the ciphertexty is obtained by rounding = %fil + z modP(F) with the precision of In, i.e., we
havely; — yi| < 1/nfor everyi € {1,...,n}.

Decryption: We decrypt a received ciphertexinto [p (y, uy]k~1 mod p, wherek™? is the inverse ok in
Zp.

Before evaluating the performance of mAQ5 precisely, we give the summary of the results as follows.

Theorem C.2. The cryptosystemnAO5 encrypts glog p(n) |-bit plaintext into an @nlog n)-bit ciphertext
with decryption error probability at mo("*™M) where p< n/8/(4sy(n)) and s> Va/n(n). The security

of mAO5is based on the security 8i05. The size of the public key is the same as that of the original one.
The size of the private key|[ikg p] plus that of the original one.

Settingn(n) = logn, we obtain arO(log n)-bit cryptosystem with negligible decryption errors.

Finally, we discuss the pseudohomomorphic property of mA05. We consider a modified versioh mAQ5
of our multi-bit mAO5 is the same cryptosystem as mAO5 except that the precisiof48™or its cipher-
texts instead of An. This modified version mAG5actually has the pseudohomomorphism. We denote by
E5, the encryption function of mAUSsuch that we use the Gaussian distribution with standard deviation
in the encryption procedure.

Theorem C.3(pseudohomomorphism).et p be a prime and be an integer such thaip < n"/®/(4n(n))
for any constant r~ 0. We can decrypt the sum etiphertextsy,; E (o) modP(F) into 3'X; oy mod p

with decryption error probability at mos2-¢“("). Moreover, if there exist two sequences of plaintexts
(1,...,04)and(o7, . .., 07%), and a polynomial-time algorithm that distinguishes betwggn EL (o) mod
P(F) and 31, E,%q(cri’) mod®(F) with its public key, then there exists a polynomial-time algorithm that
solvesDA’ with non-negligible probability.

In what follows, we demonstrate the performance of mAQ05 and mAf#fed in the above theorems.

C.2 Decryption Errors of mAQ5

We now give the decryption errors of our multi-bit version mAOS.

Theorem C.4. The probability of the decryption errors mAO05 is at mos~ (M)
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Proof. Lety be a ciphertext of a plaintext. It is enough to show

Pr < 27U,

_ ko 1
frel{y,u) — — | > —
((y : p) 2p

Sincep < 1/(4Vasp(n)) and Vasy(n) > 4,

_ ko 1
Pr(f uy - — > =
Jrefoo-5)- 25

IA

Pr[frc (()7, uy — I%) > 2Vasy(n)

IA

Pr[frc ((37, uy — k%) > Vasg(n) + A

By the rounding precision of/h, we also havé{(y — y),u) | < A. Therefore, we have

Pr[frc ((37, uy — k%) > Vasy(n) + 2

< Pr[frc ((y, uy — kLpT) > \/Zm(n)]

< Pr [fre (z.u) > Vasy(n)] + 27,

(In the last inequality, we use the fact that z + %fia mod®(F) andk = (fié, u> mod p.) Notice that the
fractional part okz, u) then has a folded Gaussian distributhny;,. (Recall that its density functiof, is

of the form¥,(I) = Sz (1/0) exp(—n((l - k)/a)z).) By LemmdA.10, we have

Pr [frc (z,u)) > \//_lSr](n)] < exp(-mr?(n)).

an(n)

This completes the proof. m|

C.3 Security of mAO5
The security of our cryptosystem mAO5 can be also proven by a similar technique tg&pAD

Theorem C.5. If there exist plaintextsr1, 02 € {0,..., p — 1} and a polynomial-time algorithm that dis-
tinguishes between the ciphertexioafand o, in mAQO5 with its public key, there exists a polynomial-time
algorithm that distinguishes between the ciphertex@arfid 1 in AO5 with its public key.

C.4 Pseudohomomorphism of mAO5

Decryption Errors for Sum of Ciphertexts.

C.4.1 Evaluation for mAOY

Recall that we adopt the precision of'®9" for the ciphertexts in mAQ5 We denote byES, the encryption
function of mA03 such that we use the Gaussian distribution with standard deviaiiothe encryption
procedure.

Theorem C.6(mA05). Letn(n) = w(+/logn). Also let p be a prime and be an integer such thatp <
n'/®/(4n(n)) for any constant r> 0. We can decrypt the sum efciphertextsy< , EL (o) modP(F) into

¥X_, o mod p with decryption error probability at mog2(7 M),
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Proof. Since the precision is2'°9", we can consideF*_, EL (o) mod P(F) asEnﬁrK(Zf:l o mod p). Re-
placingsandp by vk and«p respectively, we can evaluate the decryption errors with the same argument as
the proof of Theorer€.4 by the fact thai(y — y, uy| < na2-"10gn = 2~ O

Security for Sum of Ciphertexts. Combining Lemmd3.11 with the security proof of A05 in4], we
guarantee the security of the sum of ciphertexts in nfABBte that we can regadi_; EL (o) mod P(W)

asEn\&(ZiK:1 o mod p) in mAOS' by replacing the precision/i of the ciphertexts to 209",

Theorem C.7. If there exist two sequences of plaintefds, ..., o) and (o7, ...,0) and a polynomial-
time algorithm; that distinguishes betwed;; ; El (o), pk) and (Xisg Erln(o-i’), pk), then there exists a
probabilistic polynomial-time algorithn#l that solveDA’.

D Proof of Theorem[3.2

For the proof of Theoreff8.2, we first describe the transference theorems.

D.1 Transference theorems
Let B(r) be ann-dimensional ball irR" centered ad with radiusr, i.e.,B(r) = {x e R" : ||x|| < r}.

Definition D.1 (Minkowski’s successive minima)~or an n-dimensional lattice L iR" the ith successive
minimaJ;(L) is defined as follows:
Ai(L) = mln max||Vi
I( ) ..... veL1<?<| ” J“’
where the sequence of vecters. . ., v; € L ranges over all i linearly independent lattice vectors.

It is not hard to show that

Ai(L) = min{r max  dim(spanyi,...,Vi)) = i}.
vl ..... vieLNB(r)

Banaszczyk showed the following transference theoref]in [
Theorem D.2([[7]). For every n-dimensional lattice L and every constant 8/2r,
Ai(L) - An-isa(L?) < cn,
for all sufficiently large n.

We say a sublattice’” C L is asaturated sublatticé L’ = L n span(’), where spar() is the linear
subspace ak" spanned by the basis bf. For 1< i < n, we defineg;(L) to be the minimunr such that the
sublattice generated lyn B(r) contains an-dimensional saturated sublatticeé Clearly,4i(L) < gi(L) for
1<i<n

Cai improved Theoreid®.2 as the following theorem.

Theorem D.3([9]). For every an n-dimensional lattice L and for every constant®/2r,
Ai(L) - On-ira(L7) < cn,

for all sufficiently large n.
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D.2 Proof of Theorem3.2
Now, we give the proof of Theore@2

Proof of Theorer.2 The proof is similar to the argument @,[6]. Let H, be the distribution of; in the
key generation procedure of Afan. Ajtai and Dwork gave the following two lemmas.

Lemma D.4 (Lemma 8.1,1¢]). If there exists a probabilistic polynomial-time algorithBy such that dis-
tinguishes between(H) and Upw) with (V, W), there exists a probabilistic polynomial-time algoritti®
such that distinguishes betweeg &hd Uz, where U is an uniform distribution on C.

Lemma D.5(Lemma 8.2,[@]). If there exists a probabilistic polynomial-time algorith®y such that dis-
tinguishes betweenHand U, there exists a probabilistic polynomial-time algorittifhsuch that solve the
worst case of (n)-uSVP.

We now evaluate the value d{n). Given an instance of(n)-uSVP, we obtain a lattick by certain
linear transformations shown iB][such that we canfgciently compute its shortest vectoif there exists
an dficient attacking algorithm for ABgn. Then, the dual latticd = L* of L has a saturated sublattide
on a hyperplanély orthogonal tau. Let| be the length of the smallest basisXf where the length of the
basisB = (v1,...,Vn) is defined as max; . n|Ivill.

It is also commented ir] that the lengtH of the smallest basis af is approximatelyO(n?/ f(n)). It
also holds that this upper bound®n~"-3) by combining the argument i§] with our generalization. Thus,
we obtainf(n) = O(n*®).

On the other hand, we obtaiz(L) - gn-1(L*) < cnby TheorenD.3with i = 2, i.e.,22(L) - | < cnfor
some constant > 3/2r. We can also see thag(L) > f(n)||lu|| from the definition. Thus, we can obtain an

upper boundd(n/ f(n)) of I.
By the above argument, we obtai(n) = O(n'**), which completes the proof of Theoré2 m|

E Lattice Problems and Their Complexity

We list up well-known hard problems used for lattice-based cryptosystems. The length of vectors is defined
by thel, norm in this paper.

The shortest vector problem (SVP) and its approximation version {BNd&e been deeply studied in
the computer science.

Definition E.1 (SVP). Given a basi® of a lattice L, find a non-zero vectere L such that for any non-zero
vectorx € L, |[v]] < |IX]|.

Definition E.2 (SVP,). Given a basisB of a lattice L, find a non-zero vectar € L such that for any
non-zero vectox € L, ||V|]| < y [IX].

The NP-hardness of SVP was shown by Aj@liinder a randomized reduction in 1998. Recently, KRG} [
proved that SVPis NP-hard under the assumption NP RP for any constant. He also proved that
SVP,oogni/2-+ is NP-hard within under the assumption MARTIME (2rO(ogn),

Even within a polynomial approximation factor, it is not known whether there exists a polynomial-time
algorithm for the approximation version of SVP. The most well-known solution to this approximation
problem is the so-called LLL algorithm proposed #8]. This algorithm can solve S\iR: in polynomial
time.
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On the other hand, there are several non-NP-hardness results on the approximation version of SVP with a
polynomial approximation factor. Goldreich and Goldwas&é} $howed SV%( J7Togn) is in NPN coAM.

Aharonov and Rege¥l] showed that SV, g is in NPN coNP.

The unique shortest vector problem (uSVP) is also well known as a hard lattice problem applicable to
cryptographic constructions. We say the shortest vectdia latticeL is f-unique if for any non-zero vector
x € L which is not parallel tav, f ||V|]| < |[X||. The definition of uSVP is given as follows.

Definition E.3 (f-uSVP) Given a basi® of a lattice L whose shortest vector is f-unique, find a non-zero
vectorv € L such that for any non-zero vectere L which is not parallel tov, f||v]| < ||X]|.

Similarly to the case of SVP, the exact version of uSVP is shown to be in NP-hard by Kumar and Sivaku-
mar [27]. Cai [8] showed thaQ2(n'/4)-uSVP is in NPN coAM. See Figure 9 for the hardness of SVP and
uSvP.

In the computational complexity theory on lattice problems, the shortest linearly independent vectors
problem (SIVP) and its approximation version Skvd&te also considered as a hard lattice problem.

Definition E.4 (SIVP). Given a basidB of a lattice L, find a sequence of n linearly independent vectors
V1,...,Vpn € L such that for any sequence of n linearly independent vegtors. , X, € L, max-1__n|[vill <
max=1....n [IXill.

.....

,,,,,

Definition E.5 (SIVP,). Given a basisB of a lattice L, find a sequence of n linearly independent vectors
V1,...,Vpn € L such that for any sequence of n linearly independent ve&tors. , X, € L, max-1__n|[vill <

Yy max=y,..nlXl-

.....

Although the Diophantine Approximation (DA) was originally a number-theoretic problem, DA is
deeply related to the lattice theory. (See, eXf].) The problem DA is defined as follows.

Definition E.6 (DA). Given n real numbersyt...,ry and an integer M, find an integer ® [1, M"] such
thatmax. , frc (mr) < 1/M.

From a complexity-theoretical point of view, Lagarid@?] showed that decisional version of DA is
NP-complete. Trolini36] also showed a reduction from the decisional version of DA to a certain lattice
problem. In the context of cryptography, Ajtai defined a variant of DA and constructefficiers lattice-
based cryptosystem based on the hardness of this vadlaniMe refer to this variant as DAdefined as
follows.

Definition E.7 (DA’, [4]). Let ¢, ¢, > 0 be constants. Assume thatr. ., r, are samples from the uniform
distribution on(0, 1) with the condition that there exists an integer m such that

1<m< n®"andfrc(mr) < n @+ fori=1,...,n.

Givenn, k,...,rn, C, C, find such an integer m.
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exact C 4/n/logn \n on/2
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exact nl/4
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Figure 9:the hardness of SVP and uSVP
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