MULTI-BIT CRYPTOSYSTEMS BASED ON LATTICE PROBLEMS

\square Background
\square Our Results
\square Conclusion

Agenda

\square Background
\square Lattices
\square Lattice problems
\square Lattice-based cryptosystems

- Motivation
\square Our Results
\square Conclusion

Lattices

\square Given: $B=\left[b_{1}, \ldots, b_{n}\right]$
$\square L(B):=\left\{\Sigma_{i} \alpha_{i} b_{i} \mid \alpha_{i} \in Z\right.$ for all i\}

SVP (Shortest Vector Problem)

SVP:

Given a basis B of a lattice L, find a shortest non-zero vector \mathbf{v} in L
$2 b_{1}-3 b_{2}$

$$
b_{2}
$$

USVP (unique Shortest Vector Problem)

v: 2-unique
 $\forall \mathbf{x} \in L$, if $\mathbf{x} H \mathbf{v}$ then $2\|\mathbf{v}\| \leq\|\mathbf{x}\|$

Hardness of uSVP

\square If $f<g$, $f-u S V P$ is not easier than $g-u S V P$
$\square \mathbf{v}: g$-unique $\rightarrow \mathbf{v}: f$-unique
$\square \mathrm{f}=1 \rightarrow$ NP-hard [Kumar and Sivakumar '01]
$\square f=n^{1 / 4} \rightarrow$ coAM (seems not NP-hard) [Cai 'g8]
$\square \mathrm{f}=\mathrm{poly}(\mathrm{n}) \rightarrow$?
\square Assumption:

- If $f=$ poly(n), $f-u S V P$ is intractable in the worst-case

Lattice-Based Cryptosystems

\square Based on lattice problems
\square SVP, uSVP, CVP, and etc
\square Advantages
\square Fast encryption and decryption
\square (Seemes) hard to attack with quantum power
\square Two types
\square Type A: efficient, but no security proofs
\square Type B: security proofs, but inefficient

Related Works

Type A

GGH

[Goldreich, Goldwasser, and Halevi '98]
NTRU
[Hoffstein, Pipher, and Silverman '98]

Type B

AD
 [Ajtai and Dwork '97]

$\mathrm{AD}_{\mathrm{GGH}}$ (Errorless version of AD cryptosystem)
[Goldreich, Goldwasser, and Halevi '98]

Regevo4
 [Regev '04]

Regevo5
 [Regev '05]

Type B

$\square \mathrm{AD}_{\mathrm{GGH}}$, Regevo4, Regevo5, and Ajtaio5
\square Advantage

- Provable security

■ with average-case/worst-case connection (except Ajtaio5)
\square Disadvantages
\square |pk| is huge

- |plaintext|=1

Motivation

\square Towards practical lattice-based cryptosystems in Type B

1. $|\mathrm{pk}| \rightarrow$ small
2. |plaintext| \rightarrow large

- w/o changing |cipher|

Agenda

\square Background
\square Our Results
\square Summary

- Review of Regevo4
\square Our technique
\square Analysis of trade-off
\square Pseudohomomorphism
\square Conclusion

Our Results

\square Results
\square Proposal of multi-bit versions of Type B

- $\mathrm{AD}_{\text {GGH, }}$ Regevo4, Regevo5, and Ajtaio5
\square Analysis of the trade-off
- between the size of plaintext and security levels
\square Pseudohomomorphism
- AD GGH, Regevo4, Regevo5, and Ajtaio5

Eg: Regevo4

\square Security parameter: n
$\square \mathrm{n}$ is the dimension of lattices
\square Key Generation
\square Encryption
\square Decryption
\square Decryption Errors
\square Security Reduction

Regevo4 - Key Generation 1

\square Choose private priod d
\square Consider periodic Gaussian distrib. with variance α^{2}

Regevo4 - Key Generation 2

\square Choose $\mathrm{a}_{11}, \ldots, \mathrm{a}_{\mathrm{m}}$ according to the distribution

Regevo4 - Key Generation 3

\square Decide the index k
$\square a_{k} / 2$ must be in "bottom"

Regevo4 - Key Generation 4

\square Secret Key: d
\square Public Key: a_{1}, \ldots, a_{m}, k

Regevo4 - Encryption of "o"

$\square r \in_{R}\{0,1\}^{m}$
$\square E(0)=\sum_{i} r_{i} a_{i} \bmod N$

Regevo4-Encryption of "1"

$\square r \in_{R}\{0,1\}^{m}$
$\square E(1)=a_{k} / 2+\sum_{i} r_{i} a_{i} \bmod N$

Regevo4-Decryption 1

\square Received ciphertext is $c \in\{0, \ldots, N-1\}$
\square Consider c mod d

Regevo4 - Decryption 2

\square Decrypt to "o"

Regevo4 - Decryption 3

\square Decrypt to "1"

Regevo4 - Decryption Errors

\square Consider c mod d

Regevo4-Security

$\square \mathrm{E}(\mathrm{o})$ vs. $\mathrm{E}(1)$ with $\mathrm{pk} \rightarrow \mathrm{E}(\mathrm{o})$ vs. U with pk
$\square E(o)$ vs. U with pk $\rightarrow O(n / \alpha)-u S V P$ in the worst case
$\square \alpha^{2}$ is the variance of distrib. in key generation

Regevo4-Security

$\square \mathrm{E}(\mathrm{o})$ vs. $\mathrm{E}(1)$ with $\mathrm{pk} \rightarrow \mathrm{E}(\mathrm{o})$ vs. U with pk
$\square \mathrm{E}(\mathrm{o})$ vs. U with $\mathrm{pk} \rightarrow \mathrm{O}(\mathrm{n} / \alpha)-\mathrm{uSVP}$ in the worst case
$\square \alpha^{2}$ is the variance of distrib. in key generation

Our Technique

\square \#plaintext : $2 \rightarrow$ p

- Increase \# of "waves"
\square Same |ciphertext| and |pk|

Multi Bit - Illustration

$\square \mathrm{E}(\mathrm{o})$: Blue
$\square E(1)$: Green

Multi Bit - Illustration

- Increase \# of "waves"
\square with $\mathrm{a}_{\mathrm{k}}=(\mathrm{p}+1) \mathrm{d}+\mathrm{e}$

Multi Bit - Illustration

\square make "waves" thin to decrease decrytpion errors
\square Variance: $\alpha^{2} \rightarrow(\alpha / p)^{2}$ in key generation

Multi Bit - Illustration

\square Variance: $\alpha^{2} \rightarrow(\alpha / p)^{2}$
\square Underlying Problem: $\mathrm{O}(\mathrm{n} / \alpha)-\mathrm{uSVP} \rightarrow \mathrm{O}(\mathrm{pn} / \alpha)-\mathrm{uSVP}$

Comparison

Regevo4

Ours

plaintext 1
 $\log p$

ciphertext $8 n^{2}$
\leftarrow
public key ${ }^{\text {O}(~} \mathrm{n}^{4}$)
\leftarrow
secret key Õ(n^{2})
\leftarrow
security \quad Õ $\left(\mathrm{n}^{1.5}\right)$-uSVP \quad Õ $\left(\mathrm{pn}^{1.5}\right)$-uSVP

Comparison-2

	$\mathrm{AD}_{\mathrm{GGH}}$	Ours	Regevo4	Ours
plaintext	1	$\log p$	1	$\log p$
security	$\begin{aligned} & O\left(n^{11}\right)- \\ & \text { uSVP } \end{aligned}$	$\begin{aligned} & \mathrm{O}\left(\mathrm{pn}^{11}\right)- \\ & \text { uSVP } \end{aligned}$	$\begin{aligned} & \text { Õ(n¹.5)- } \\ & \text { USVP } \end{aligned}$	$\begin{aligned} & \text { Õ(pn1.5)- } \\ & \text { uSVP } \end{aligned}$
	Regevo5	Ours	Ajtaio 5	Ours
plaintext	1	$\log p$	1	$\log p$
security	$\mathrm{SVP}_{\text {Ō(n1.5) }}$	$\mathrm{SVP}_{\text {Õ(pn1.5) }}$	DA	DA^{\prime}

Homomorphism of PKE

$\square E(m)+E\left(m^{\prime}\right)=E\left(m+m^{\prime}\right)$
\square cf. RSA, Goldwasser-Micali,...
\square Do Ro4 and ours have homomorphism?
\square No
\square Pseudo-homomorphism

Pseudo-homomorphism

$\square \mathrm{D}$ (blue) $=0, \mathrm{D}$ (green) $=1$
$\square \mathrm{D}($ blue + green $)=1, \mathrm{D}($ green + green $)=0$

$a_{k} / 2 \bmod d$

Conclusions

\square Results
\square Proposal of multi-bit versions of Type B

- $\mathrm{AD}_{\text {GGH, }}$ Regevo4, Regevo5, and Ajtaio5
- Analysis of the trade-off
- between the size of plaintext and security levels
- Pseudo-homomorphism
- $\mathrm{AD}_{\text {GGH, }}$ Regevo4, Regevo5, and Ajtaio5
\square Open Problem
$\square \Theta(n)$-bit cryptosystems with a/w connection
- We develop O(log n)-bit cryptosystems with a/w
- It may require new idea

