MULTI-BIT CRYPTOSYSTEMS BASED ON LATTICE PROBLEMS

PKC 2007

Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa (Tokyo Institute of Technology)

- Background
- Our Results
- Conclusion

- Background
 - Lattices
 - Lattice problems
 - Lattice-based cryptosystems
 - Motivation
- Our Results
- Conclusion

Lattices

□ Given: $\mathbf{B} = [\mathbf{b}_1, ..., \mathbf{b}_n]$ □ L(**B**) := { $\Sigma_i \alpha_i \mathbf{b}_i \mid \alpha_i \in \mathbb{Z}$ for all i}

SVP (Shortest Vector Problem)

uSVP (unique Shortest Vector Problem)

Ω

• **v**: 2-unique $\forall \mathbf{x} \in L$, if $\mathbf{x} \notin \mathbf{v}$ then $2\|\mathbf{v}\| \le \|\mathbf{x}\|$

Hardness of uSVP

- □ If f < g, f-uSVP is not easier than g-uSVP</p>
 - v:g-unique →v:f-unique
- □ $f=1 \rightarrow NP$ -hard [Kumar and Sivakumar `01]
- □ $f=n^{1/4}$ → coAM (seems not NP-hard) [Cai '98]
- □ f=poly(n)→?
- □ Assumption:
 - □ If f=poly(n), f-uSVP is intractable in the worst-case

Lattice-Based Cryptosystems

- Based on lattice problems
 - SVP, uSVP, CVP, and etc
- Advantages
 - Fast encryption and decryption
 - (Seemes) hard to attack with quantum power
- Two types
 - Type A: efficient, but no security proofs
 - Type B: security proofs, but inefficient

Related Works

Type A

GGH

[Goldreich, Goldwasser, and Halevi '98]

NTRU

[Hoffstein, Pipher, and Silverman '98]

Type B

AD

[Ajtai and Dwork '97]

AD_{GGH} (Errorless version of AD cryptosystem) [Goldreich, Goldwasser, and Halevi '98]

Туре В

- □ AD_{GGH}, Regevo₄, Regevo₅, and Ajtaio₅
- Advantage
 - Provable security
 - with average-case/worst-case connection (except Ajtaio5)
- Disadvantages
 - |pk| is huge
 - |plaintext|=1

Motivation

- Towards practical lattice-based cryptosystems in Type B
 - 1. |pk|→small
 - 2. |plaintext|→large
 - w/o changing |cipher|

Agenda

- Background
- Our Results
 - Summary
 - Review of Regevo4
 - Our technique
 - Analysis of trade-off
 - Pseudohomomorphism
- □ Conclusion

Our Results

Results

- Proposal of multi-bit versions of Type B
 - AD_{GGH}, Regevo4, Regevo5, and Ajtaio5
- Analysis of the trade-off
 - between the size of plaintext and security levels
- Pseudohomomorphism
 - AD_{GGH}, Regevo₄, Regevo₅, and Ajtaio₅

Eg: Regevo4

- Security parameter: n
 - n is the dimension of lattices
- Key Generation
- Encryption
- Decryption
 - Decryption Errors
- Security Reduction

Regevo₄ - Key Generation 1

- Choose private priod d
- \square Consider periodic Gaussian distrib. with variance α^2

Regevo₄ - Key Generation ₂

 \Box Choose a_1, \dots, a_m according to the distribution

Regevo₄ - Key Generation ₃

- Decide the index k
- □ a_k/2 must be in "bottom"

Regevo₄ - Key Generation ₄

Regevo4 - Encryption of "o"

□ $r \in_{R} \{0, 1\}^{m}$ □ E(o) = Σ_i r_ia_i mod N

Regevo4 - Encryption of "1"

 $\Box r \in_{R} \{0,1\}^{m}$ $\Box E(1) = a_{k}/2 + \Sigma_{i} r_{i}a_{i} \mod N$

Regevo4 - Decryption 1

- □ Received ciphertext is c∈{o,...,N-1}
- Consider c mod d

Regevo₄ - Decryption ₂

Decrypt to "o"

Regevo₄ - Decryption ₃

□ Decrypt to "1"

Regevo₄ - Decryption Errors

Consider c mod d

Regevo₄ - Security

- \Box E(o) vs. E(1) with pk \rightarrow E(o) vs. U with pk
- □ E(o) vs. U with pk \rightarrow O(n/α)-uSVP in the worst case

 $\square \alpha^2$ is the variance of distrib. in key generation

Regevo₄ - Security

- \Box E(o) vs. E(1) with pk \rightarrow E(o) vs. U with pk
- \Box E(o) vs. U with pk \rightarrow O(n/ α)-uSVP in the worst case
 - $\square \alpha^2$ is the variance of distrib. in key generation

Our Technique

- □ #plaintext : 2→p
- Increase # of "waves"
 - Same |ciphertext| and |pk|

□ E(o): Blue □ E(1): Green

0

- Increase # of "waves"
- □ with $a_k = (p+1)d + e$

make "waves" thin to decrease decrytpion errors

□ Variance: $\alpha^2 \rightarrow (\alpha/p)^2$ in key generation

- □ Variance: $\alpha^2 \rightarrow (\alpha/p)^2$
- □ Underlying Problem: $O(n/\alpha)$ - $uSVP \rightarrow O(pn/\alpha)$ -uSVP

Comparison

	Regevo4	Ours
plaintext	1	log p
ciphertext	8n²	\leftarrow
public key	Õ(n ⁴)	\leftarrow
secret key	Õ(n²)	\leftarrow
security	Õ(n¹.₅)-υSVP	Õ(p n¹.5)-υSVP

Comparison - 2

	AD _{GGH}	Ours	Regevo4	Ours
plaintext	1	log p	1	log p
security	O(n¹¹)- ∪SVP	O(p n¹¹)- υSVP	Õ(n¹.₅)- ∪SVP	Õ(p n¹.5)- υSVP
	Regevo5	Ours	Ajtaio5	Ours
plaintext	1	log p	1	log p
security	$SVP_{\tilde{O}(n^{1}\cdot 5)}$	SVP _{Õ(pn1.5)}	DA	DA'

Homomorphism of PKE

- E(m)+E(m')=E(m+m')
 - cf. RSA, Goldwasser-Micali,...
- Do Ro4 and ours have homomorphism?
 - No
 - Pseudo-homomorphism

Pseudo-homomorphism

- D(blue)=0, D(green)=1
- D(blue+green)=1, D(green+green)=0

 $a_k/2 \mod d$

Conclusions

Results

Proposal of multi-bit versions of Type B

- AD_{GGH}, Regevo₄, Regevo₅, and Ajtaio₅
- Analysis of the trade-off
 - between the size of plaintext and security levels
- Pseudo-homomorphism
 - AD_{GGH}, Regevo4, Regevo5, and Ajtaio5
- Open Problem
 - \square $\Theta(n)$ -bit cryptosystems with a/w connection
 - We develop O(log n)-bit cryptosystems with a/w
 - It may require new idea