格子問題をベースとした 暗号について

東京工業大学 数理・計算科学専攻田中研究室 草川恵太

流れ

- □導入
- □基礎
 - □格子の定義/格子定数
- □格子とハッシュ関数
 - average-case/worst-case connection
- □おわりに
 - □歴史
 - □未解決問題

導入

格子問題と暗号

- □数論系以外の候補
- □量子計算機でも難しいと思われている
 - □数論系は量子計算機を使うと解ける
- □安全性を最悪時から保証できる
 - average-case/worst-case connection
 - ■以下a/wと略す
 - □数論系のa/w
 - \blacksquare cf: DLP Ω random self reducibility (RSR)
 - ■群Gを固定するとRSRがある

歴史

- **1800-**
 - Lagrange, Gauss, Hermite, Minkowski,...
- [Lenstra-Lenstra-Lovasz '82]
 - □ LLLアルゴリズム (近似度2ⁿ)
- [Ajtai '96]
 - □ a/w付の一方向性関数族の構成
- [Ajtai-Dwork '97]
 - a/w付の公開鍵暗号方式構成
- [Ajtai '98]
 - l₂normでのSVPのNP困難性 (ただしランダム帰着)

ジャンル

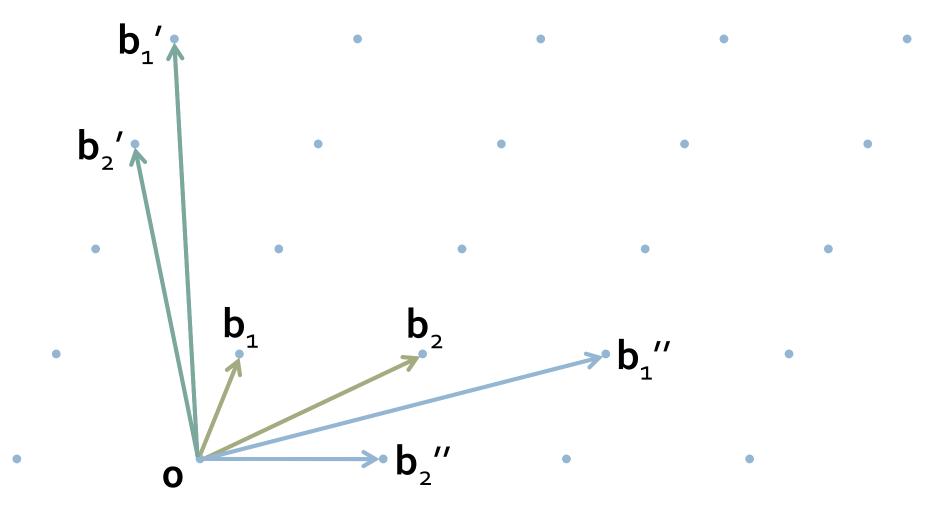
- □基底の縮小とその応用
 - □攻撃に使われることが多い
 - ■ナップサック暗号, RSA暗号, etc.
- □ 格子暗号 (a/w無)
 - □ 公開鍵暗号, 署名
 - GGH, NTRU, etc
- □ 格子暗号 (a/w付)
 - □ハッシュ関数,公開鍵暗号
 - AD暗号, Regev暗号, etc
- □格子問題の困難性

基礎

格子の定義

- □数学的な定義
 - ■格子L:=R^m中の離散加群
- □直観的な定義
 - □ 基底B=[b₁,...,bո]の整数係数線形結合の集合
 - 格子L(**B**) := $\{\sum_i \alpha_i \mathbf{b}_i \mid \alpha_i \in \mathbb{Z}, \text{ for all } i\}$
 - ■1つの格子に対して様々な基底がある
 - ■行列の行の基本変形について不変
- □基本領域
 - \square P(**B**)={ $\sum_i \alpha_i \mathbf{b}_i \mid o <= \alpha_i < 1 \text{ for all } i$ }

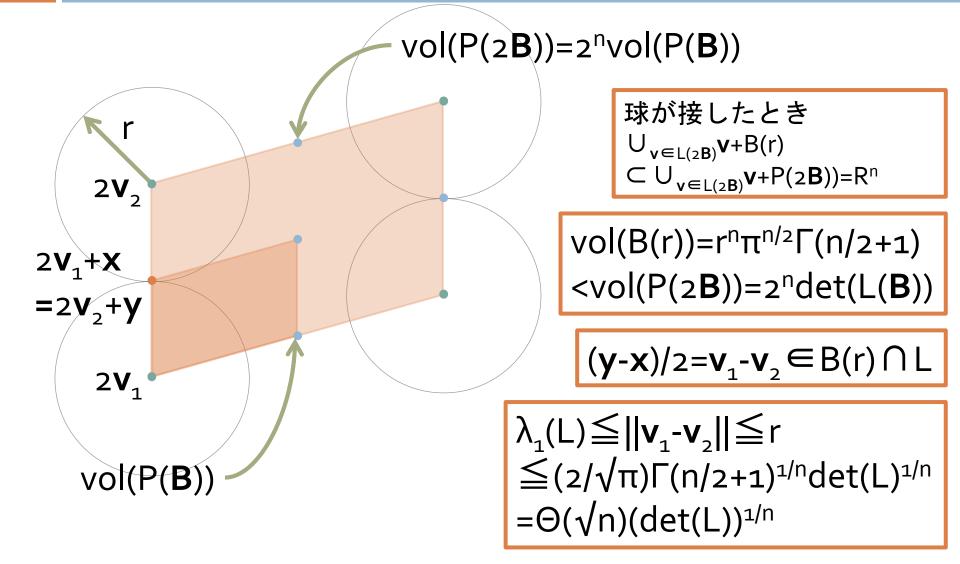
例:格子



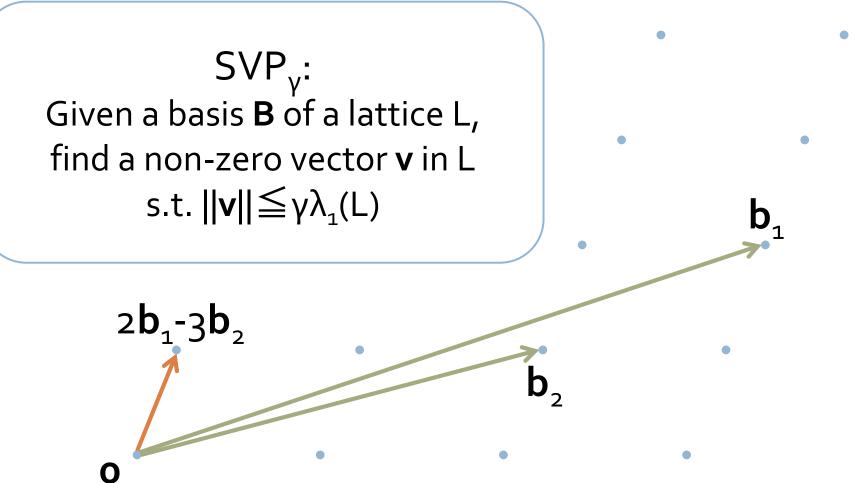
格子定数

- det(L)
 - ■格子の基本領域の体積
 - Bが格子Lの基底であるとき det(L)=abs(det(B))=vol(P(B))
- \square $\lambda_1(L)$
 - □最短ベクトルの長さ
 - \square $\lambda_1(L) \leq (n/\pi e)^{1/2} (det(L))^{1/n} [Minkowski]$
 - □証明は幾何的に行う

Minkowski's Lemma



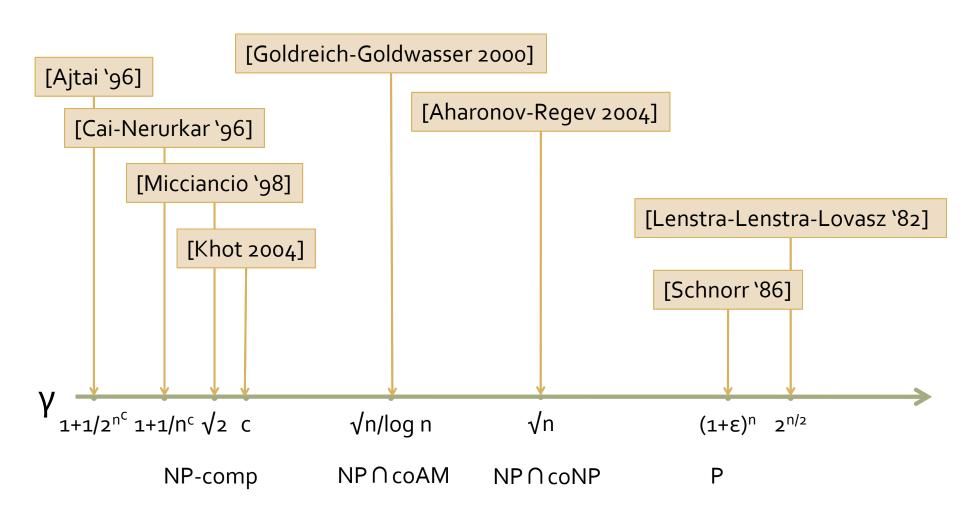
SVP (Shortest Vector Problem)



GapSVP_γ

- □ SVP_vの決定版
- □ Input: **B**, d
- Output: YES or NO
 - YES: \exists non-zero vector $\mathbf{v} \in L(\mathbf{B})$ s.t. $||\mathbf{v}|| \leq d$
 - □ NO: \forall non-zero vector $\mathbf{v} \in L(\mathbf{B})$, $||\mathbf{v}|| > \gamma d$

GapSVP_γの困難性



その他

- □双対格子
 - □ L*={ $y \in R^n$ | for all x in L, $\langle x,y \rangle \in Z$ }
 - □Lの基底がB=[b₁,...,b_n]のときL*の基底は^t(B⁻¹)
 - del(L*)=1/det(L)
- □線形空間
 - □ $lsp(\mathbf{b}_1,...,\mathbf{b}_n) = \{\sum_i \alpha_i \mathbf{b}_i \mid \alpha_i \in \mathbb{R} \text{ for all } i\}$

格子とハッシュ関数

格子とハッシュ関数

- General
 - [Ajtai '96] (OWFs)
 - [GGH '96] (CRHFs)
 - [Cai-Nerurker '97] (CRHFs)
 - [Micciancio 2002] (CRHFs)
 - [Micciancio-Regev 2004] (CRHFs)
- Cyclic or Ideal Lattice
 - [Micciancio 2002] (OWFs)
 - [Lybashevsky-Micciancio 2006] (CRHFs)
 - [Peikert-Rosen 2006] (CRHFs)

ハッシュ関数

- $\Box H(q,m) = \{h_A: \{o,1\}^m \rightarrow Z_q^n \mid A \subseteq Z_q^{n \times m}\}$
 - $\square h_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q, m > n \log q$
 - □ **A**=[a₁,...,a_m]と書くと
 - $\blacksquare h_{\mathbf{A}}(\mathbf{x}) = \sum x_i \mathbf{a}_i \mod q$
 - ■計算コスト: Z_α上での足し算をnm回
- \square cf: $\Lambda(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{x} = \mathbf{o} \mod q \}$
 - □離散かつ加群→∧(A)は格子

ハッシュ関数族と衝突

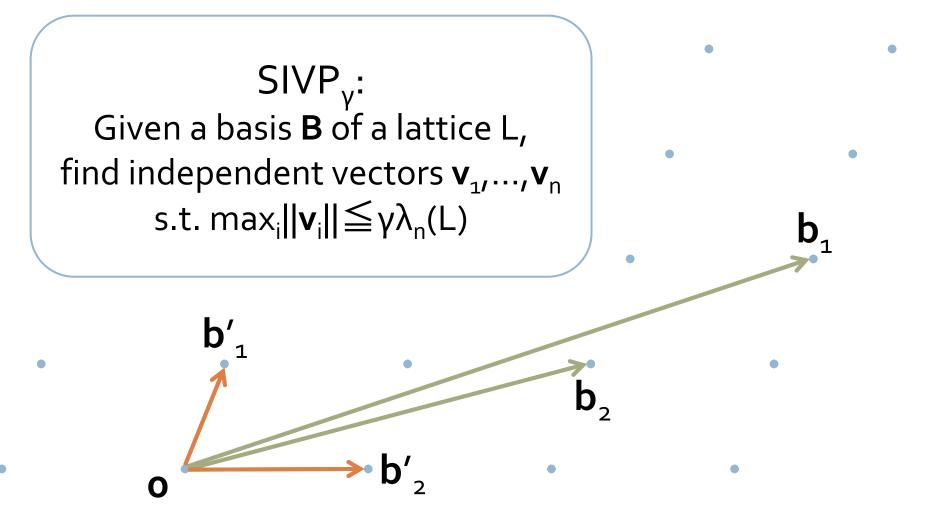
- □ 敵*針*はH(q,m)の衝突耐性を破る
 - □ $Pr[A \leftarrow_R Z_q^{n \times m}; (\mathbf{x}, \mathbf{x}') \leftarrow \mathcal{F}(\mathbf{1}^n, \mathbf{A}): Col(\mathbf{x}, \mathbf{x}') = yes] \ge n^{-c}$

- □ 敵*牙*は(**x**,**x**′)を出力する (**Ax=Ax**′ mod q)
 - **□x-x′**∈{-1,0,1}^m-oの長さは√m以下
 - □ Λ(A)の長さ√m以下のベクトルを出力できる
- □ 目標: 格子問題の最悪時を解く敵の構成
 - □どんな格子問題?

格子定数

- □ 格子定数: λ_n(L)
 - λ₁(L)の拡張
 - \square $\lambda_n(L) = \min_{\{\mathbf{v}_1, ..., \mathbf{v}_n \in L, 線形独立\}} \max_i ||\mathbf{v}_i||$
- \square $\lambda_i(L)$: successive minima [Minkowski]
 - \square $\lambda_i(L)=\min\{r: \dim(\operatorname{lsp}(L \cap B(r))) \ge i\}$

SIVP (Shortest Independent Vectors Problem)



Incremental SIVP (IncSIVP_v)

- \square IncSIVP_{γ}
 - □ 入力:基底B, 独立なベクトルの組S=(s₁,...,sո)⊂L(B)
 - $||S|| > \gamma \lambda_n(L(B))$
 - □出力:S'⊂L(B)
 - **■** ||S'||≦||S||/2
 - S'=(s',...,s'n)は独立

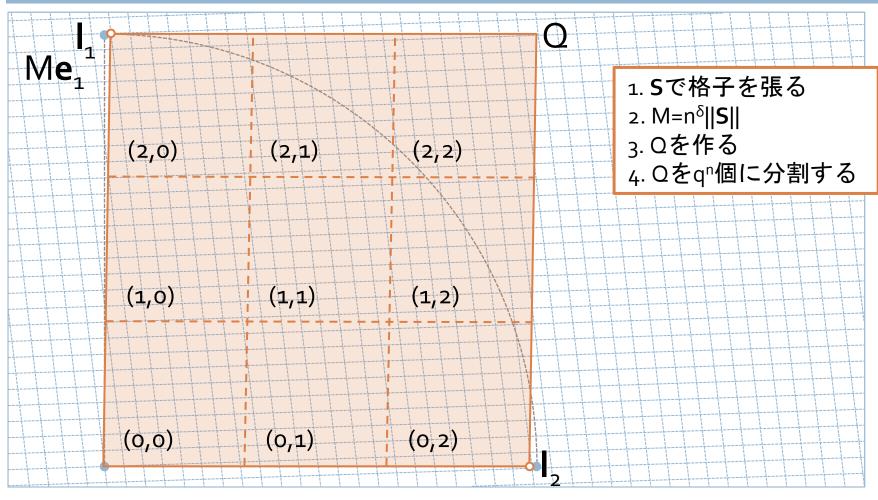
- □ IncSIVP_γが解ける→SIVP_γが解ける
- □ 敵*于*を使ってIncSIVP_νを解く

[Ajtai '96]

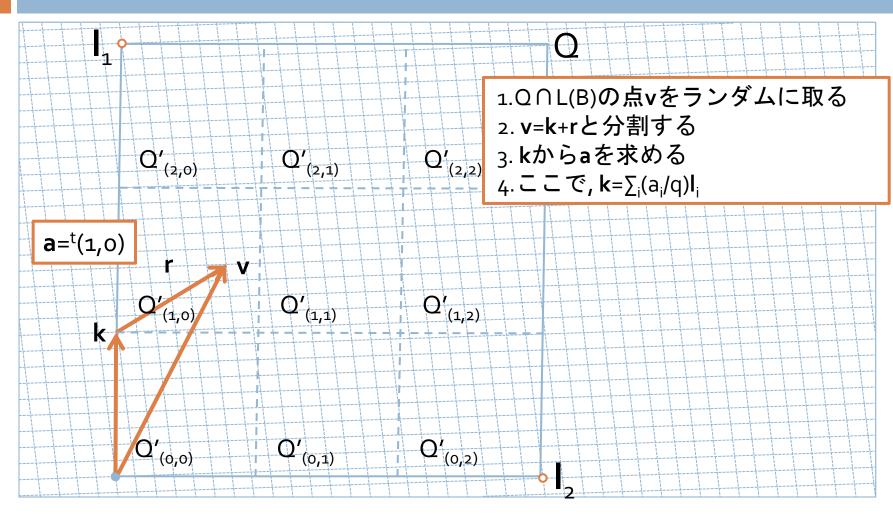
[Ajtai '96]の構成法

- □ 方針:敵*于*を使ってIncSIVP_νを解く
- 敵 *T*を使うには?
 - 基底Bとベクトルの組Sを使って,A=[a₁,...,a_m]∈Z^{n×m}を構成する
 - □ 敵 f は Az=o mod qとなるz ∈ {-1,0,1}^m {o}を出力
 - □ B,S,A,zから||s||≦||S||/2となるs∈L(B)を計算する
 - n回繰り返してS'=(s'₁,...,s'ո)を得る
 - 各s'_iはそれなりの確率で線形独立であることはテクニカルなので略

- □ Pseudo-Cube Qの構成
- □ Pseudo-Cube Qの分割
- □サンプリング
 - ■Q中の格子の点viをサンプリング
 - □分割に基づいてaiを出力



o Me₂



0

- □ Pseudo-Cube Qの構成
 - □ Q={∑_ix_iI_i | o<=x_i<1} (I_iはMe_iに近い)
- □ Pseudo-Cubeの分割
 - Qをqⁿ個のQ′に分割
- □ サンプリング
 - □ Q∩L(B)の点vをサンプリング
 - □ v=k+rとする (kはQ′aの開始点, r∈Q′。)
 - □aを出力
- □ ポイント
 - 各Q'に入っている格子点の数は大体同じ
 - $\mathbf{k} = \sum_{i} (a_i/q) \mathbf{I}_i$
 - □ rは短い||r||=(1/q)max;||I;||=O((1/q)M√n)

IncSIVPγを解く

- □ Sをm回使って, A=[a₁,...,am]を得る
 - $\mathbf{v}_i = \mathbf{k}_i + \mathbf{r}_i, \ \mathbf{k}_i = \sum_j (a_{(i,j)}/q) \mathbf{l}_j$
- □ (x,x')= 𝒯(1ⁿ,A)とし, z=x-x'とする
 - **Az=o** mod q
- \Box $s = \sum_{i} z_{i} r_{i}$

 $IncSIVP_{\gamma}$

Input: **B, S** (s.t. $||S|| \ge \gamma \lambda_n(L(B))$

Output: $\mathbf{s} \in L(\mathbf{B})$ s.t. $||\mathbf{s}|| \leq ||\mathbf{S}||/2$

IncSIVP_γを解く(s∈L(B))

 \square s \subseteq L(B)?

- $\mathbf{S} = \sum_{i} \mathbf{z}_{i} \mathbf{r}_{i} = \sum_{i} \mathbf{z}_{i} \mathbf{v}_{i} \sum_{i} \mathbf{z}_{i} \mathbf{k}_{i}$
 - \Box cf: $\mathbf{v}_i = \mathbf{k}_i + \mathbf{r}_i$, $\mathbf{k}_i = \sum_j (a_{(i,j)}/q) \mathbf{l}_j$
- $\square \sum_{i} z_{i} \mathbf{v}_{i}, \sum_{i} z_{i} \mathbf{k}_{i} \subseteq L(\mathbf{B})$
 - $\mathbf{v}_{i} \in L(\mathbf{B})$
 - □ **Az=o** mod qより∑_iz_i**a**_i=**o** mod q
 - \Box よって $\Sigma_i Z_i \mathbf{k}_i \in L(\mathbf{B})$

補足: Σ_iZ_ik_i∈L(B)について

- $I_i \subseteq L(S) \subseteq L(B)$
- for all j, $\Sigma_i z_i a_{(i,j)} = 0 \mod q$
 - \rightarrow for all j, $\Sigma_i z_i a_{(i,j)}/q \in \mathbb{Z}$
- - $\rightarrow = \Sigma_j (\Sigma_i z_i a_{(i,j)}/q) I_j \subseteq L(B)$

 $IncSIVP_{\gamma}$

Input: **B**, **S** (s.t. $||S|| \ge \gamma \lambda_n(L(B))$

Output: $\mathbf{s} \in L(\mathbf{B})$ s.t. $||\mathbf{s}|| \leq ||\mathbf{S}||/2$

IncSIVP_vを解く(||s||の不等式)

□ ||s||≤||S||/2?

$\square s = \sum_{i} z_{i} \mathbf{r}_{i} = \sum_{i} z_{i} \mathbf{v}_{i} - \sum_{i} z_{i} \mathbf{k}_{i}$

- \mathbf{c} cf: $\mathbf{v}_i = \mathbf{k}_i + \mathbf{r}_i$, $\mathbf{k}_i = \sum_j (a_{(i,j)}/q) \mathbf{l}_j$
- □ z_i ∈ {-1,0,1} と || \mathbf{r}_i ||=O((1/q)M√n)より || \mathbf{s} ||≤m O((1/q) n^{δ+0.5}|| \mathbf{S} ||)
- □ よって, mn^{δ+o.5}/q=1/2と調整すれば解ける

補足:

- M=n^δ||S||
- r_i ∈ Q′。でQ′の一辺はO(M/q)

 $IncSIVP_{\gamma}$

Input: **B**, **S** (s.t. $||S|| \ge \gamma \lambda_n(L(B))$

Output: $\mathbf{s} \in L(\mathbf{B})$ s.t. $||\mathbf{s}|| \leq ||\mathbf{S}||/2$

近似度/問題点

- □近似度をよくしたい
 - →δが近似度に効いてくる
 - →Mを小さくする必要がある (M=n^δ||**S**||)
- □ r_iを短くしたい
 - → Q′を小さくしたい
 - →Mを小さくする必要がある
- □ a_iが(ほぼ)一様分布であるためには
 - → 各Q′に含まれる格子点の数が同じ
 - →Mを大きくする必要がある

有馬馬

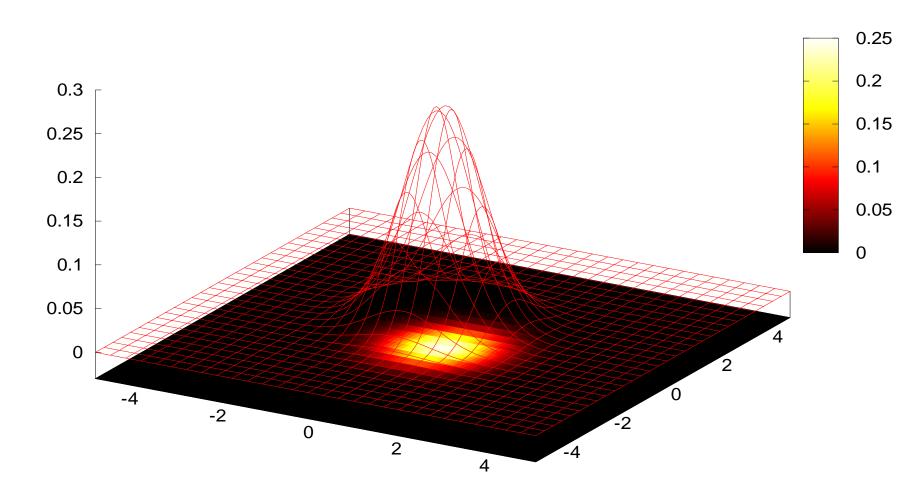
[Micciancio-Regev 2004]

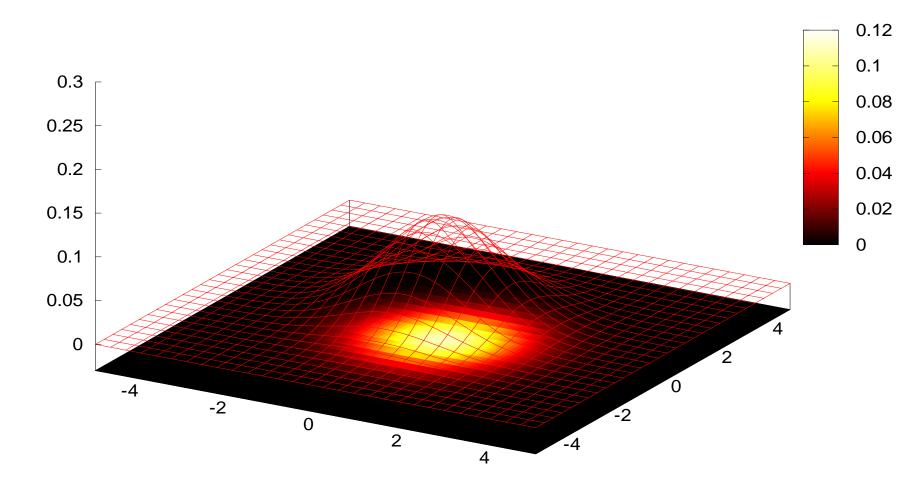
格子とハッシュ関数 - MRo4

- [Micciancio-Regev 2004]
 - □ [Ajtai '96, GGH '96, Cai-Nerurkar '97, Micciancio 2002]と構成は似ている
 - □今までの問題点
 - ■vをQ上一様分布にするためには、Mを大きく
 - ■Qの一辺のサイズMが近似度に影響
 - □改良
 - IncSIVPではなくIncGDDに
 - Qの作り方とSampling Algorithm Sの構造を変更
 - ■n次元ガウス分布とフーリエ解析を使って証明
 - ■近似度がO~(n)のSIVPベース

ガウス分布

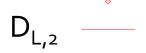
- $\square \rho_{s,c}(\mathbf{x}) = \exp(-\pi ||(\mathbf{x} \mathbf{c})/s||^2)$
 - $\square \int_{x \in Rn} \rho_{s,c}(x) dx = s^n$
- \square $v_{s,c}(\mathbf{x}) = \rho_{s,c}(\mathbf{x})/s^n$
 - $\square \int_{\mathbf{x} \in Rn} v_{s,c}(\mathbf{x}) d\mathbf{x} = 1$
- $\square \forall x \in L, D_{L,s,c}(x) = v_{s,c}(x)/v_{s,c}(L) = \rho_{s,c}(x)/\rho_{s,c}(L)$
 - 格子上に離散化したn次元ガウス分布
- □ 性質
 - $\square \rho_s \rightarrow_{FT} s^n \rho_{1/s}$
 - $\square \rho_{s,c}(L) \leq \rho_s(L)$
 - $\square \rho(L-B(c\sqrt{n}))<2^{-n}\rho(L)$
- □ もともと[Banasyzyck '93]で使われていた

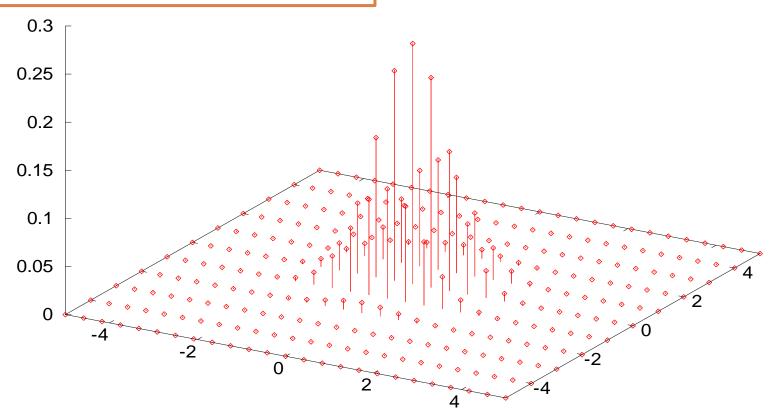


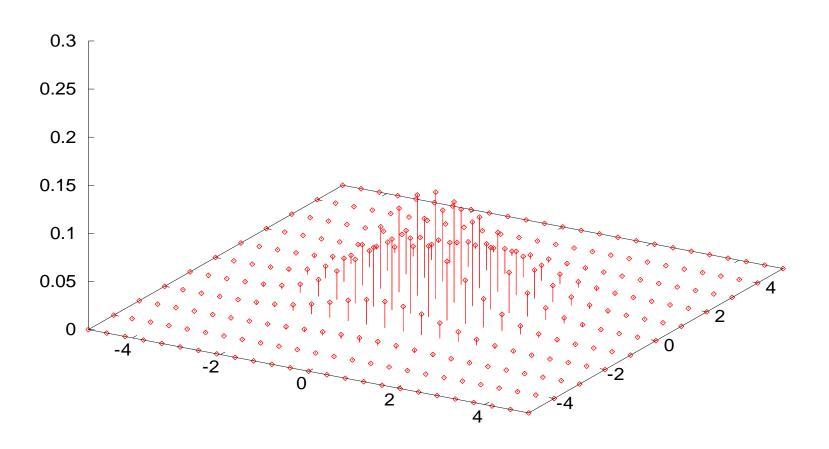


補足: 図の気持ち

- ガウス分布の性質を保って いそう
- sのサイズが小さいとガウス 分布の性質を保たなさそう







Smoothing Parameter

- □ $\eta_{\epsilon}(L):=\min\{s: \rho_{1/s}(L*-\{o\}) \leq \epsilon\}$
- □ s≧η_ε(L(**B**))ならば Δ(ν_{s,c} mod P(**B**), U(P(**B**)))≦ε/2

□性質

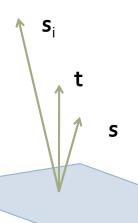
- □ ε=2⁻ⁿならば, η_ε(L)≦(1/λ₁(L*)) √n
- $\square \eta_{\varepsilon}(L) \leq \lambda_{n}(L) O(\log(n(1+1/\varepsilon)))$

IncGDD^{\phi}_{\gamma,g}

- □ Input: **B**, **S**, **t**, $r>\gamma(n)\varphi(L(B))$
- □ Output: $\mathbf{s} \in L(\mathbf{B})$ s.t. $||\mathbf{s} \mathbf{t}|| \le (||\mathbf{S}||/g) + r$
- □ ηεはληと関係があるのでIncGDD_{γ,g}ηεでもOK
 - □ 再掲: η_ε(L)≦λ_n(L)O(log(n(1+1/ε)))

SIVPが解けるか?

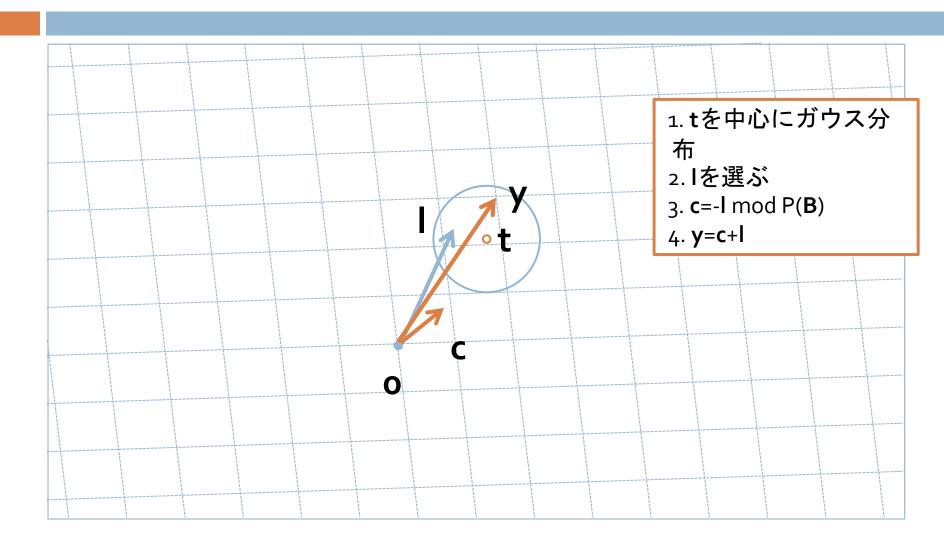
- □ IncGDD_{ν,8}^{λn}が解けるとSIVP_{8ν}が解ける
 - □ s_i=||S||となるiを探す
 - ■tをlsp(s₁,...,s_{i-1},s_{i+1},...,s_n)と垂直な長さ||S||/2のベクト ルとする
 - IncGDDで(B,S,t,||S||/8)を解く→解sを得る
 - □ ||s-t||≤||S||/8+||S||/8=||S||/4
 - sはlsp(s₁,...,s₁,...,sヵ)に含まれない
 - $||s|| \le ||s-t|| + ||t|| \le 3||S||/4$
 - □解sをs¡と置き換える



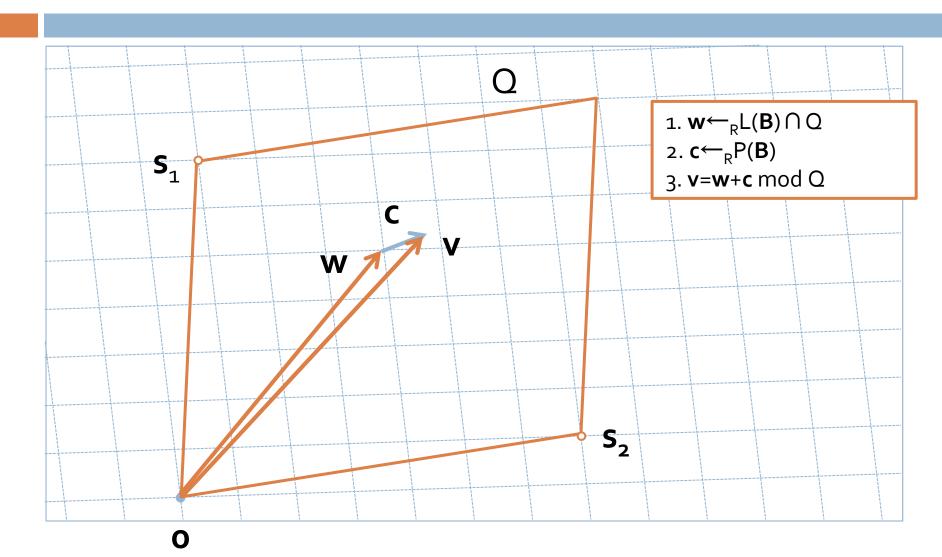
$$lsp(\mathbf{s}_{1},...,\mathbf{s}_{i-1},\mathbf{s}_{i+1},...,\mathbf{s}_{n})$$

- □ Pseudo-Cubeの構成
 - Q=P(S)になる点がポイント
- □ Pseudo-Cubeの分割
- □サンプリング
 - ■Q中の点viをサンプリング
 - viはQ中の格子点ではない
 - □分割に基づいてaiを出力

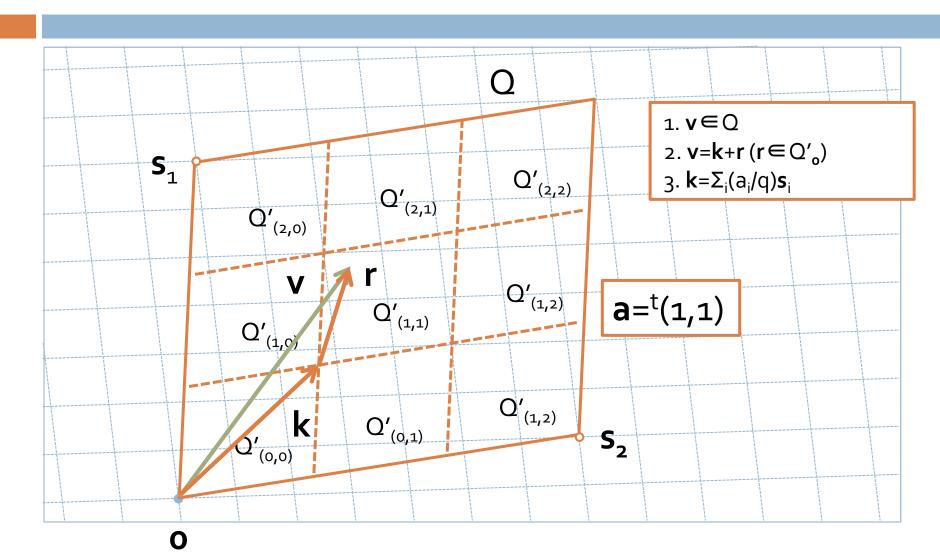
- □ Input: \mathbf{B} , \mathbf{S} , \mathbf{t} , \mathbf{s} > $\mathbf{\eta}_{\epsilon}$ (\mathbf{B})
- □ Output: **a**∈Z_qⁿ (一様分布に従う)
- □ 中間目標: c∈P(B) (一様分布に従う)とy∈L(B)
- Algorithm 1:
 - \square $\vdash \vee_{s,t}$
 - $\mathbf{c} = -\mathbf{I} \mod P(\mathbf{B})$
 - $\Delta(\mathbf{c}, \mathsf{U}(\mathsf{P}(\mathbf{B}))) \leq \varepsilon/2$
 - □ y=c+l
 - ■y∈L(B)かつyはc+tに近い
 - y~D_{L(B),s,c+t}



- □ Input: **B**,**S**,**t**,s >η $_{ε}$ (**B**)
- □ Output: **a**∈Z_qⁿ (一様分布に従う)
- □ 中間目標: v∈Q(一様分布に従う)
- Algorithm 2:
 - □w∈L(B)∩Qをランダムに選ぶ
 - **□ v=c+w** mod Q
 - □ポイント:vはQ上ほぼ一様分布



- □ Input: **B**,**S**,**t**,s >η $_{ε}$ (**B**)
- □ Output: **a**∈Z_qⁿ (一様分布に従う)
- □ Algorithm 3: vを使って, aを作る
 - □ aをvが入っているQ'aのインデックスとする
 - $\mathbf{v} = \mathbf{r} + \Sigma_{i}(a_{i}/q)\mathbf{s}_{i}$
 - □ r ∈ Q′₀かつ||r||≦(1/q)||S||√n



IncGDDを解く

- □ Sをm回使って, **A**=[**a**₁,...,**a**_m]を得る
- □ $z=\mathcal{F}(1^n, A)$ とする (Az=o mod q, z∈{-1,0,1}^m-{o})
- $\square \mathbf{x} := \Sigma_i z_i (\mathbf{c}_i \mathbf{v}_i) + \Sigma_i z_i (\Sigma_j (a_{(i,j)}/q) \mathbf{s}_j)$
- \square s:= \mathbf{x} - $\Sigma_i \mathbf{z}_i \mathbf{y}_i$

- □示すべきこと
 - \square s \subseteq L(B)
 - $□ ||s-t|| \le (||S||/g) + r$

IncGDD

Input: **B**, **S**, **t**, $r > \gamma(n) \varphi(L(B))$

IncGDDを解く (s∈L(B))

- \square s \subseteq L(B)?
 - \square $s=x-\sum_i z_i y_i$
- $\square \mathbf{x} = \Sigma_i z_i (\mathbf{c}_i \mathbf{v}_i) + \Sigma_i z_i (\Sigma_i (a_{(i,j)}/q) \mathbf{s}_i) \subseteq L(\mathbf{B})$
 - □ 前半:
 - $\mathbf{c}_i \mathbf{v}_i = ((\mathbf{c}_i + \mathbf{w}_i) \mathbf{v}_i) \mathbf{w}_i \subseteq \mathsf{L}(\mathsf{B})$
 - $\mathbf{v} = \mathbf{c} + \mathbf{w} \mod \Omega, \mathbf{w} \in \mathsf{L}(\mathbf{B})$
 - □後半:
 - $s_i \in L(S) \subseteq L(B)$
 - for any j, Σ_iz_ia_(i,i)/q∈Z ([Ajtai '96]と同じ)
 - よって $\Sigma_i z_i (\Sigma_i (a_{(i,j)}/q) s_i) \subseteq L(B)$
- $p_i \in L(B)$

IncGDD

Input: **B**, **S**, **t**, $r > \gamma(n) \varphi(L(B))$

IncGDDを解く(||s-t||の不等式)

- \square s=x- $\sum_i z_i y_i$
- $= \mathbf{x} = \sum_{i} z_{i} (\mathbf{c}_{i} \mathbf{v}_{i}) + \sum_{i} z_{i} (\sum_{j} (a_{(i,j)}/q) \mathbf{s}_{j})$
- □ ||x-Σ_iz_ic_i||は小さい
- □ ||(c_i+t_i)-y_i||も小さい
 - $\mathbf{D}_{L,s,ci+ti}$
- $||s+\Sigma_i z_i \mathbf{t}_i|| \leq ||x-\Sigma_i z_i \mathbf{c}_i|| + ||\Sigma_i z_i ((\mathbf{c}_i + \mathbf{t}_i) \mathbf{y}_i)||$
- □ どこかのt_i=-tとしておく

IncGDD

Input: **B**, **S**, **t**, $r > \gamma(n) \varphi(L(B))$

IncGDDを解く(||s-t||の不等式)

- $\square ||\mathbf{x} \Sigma_i \mathbf{z}_i \mathbf{c}_i|| \leq ||\mathbf{S}||/g?$
- $\square \|\mathbf{x} \Sigma_i z_i \mathbf{c}_i\| \leq (1/q) m \|\mathbf{S}\| \sqrt{n}$
 - \blacksquare 左辺= $\|\Sigma_i z_i(-\mathbf{v}_i + \Sigma_j(a_{(i,j)}/q)\mathbf{s}_j)\| = \|\Sigma_i z_i(-\mathbf{r}_i)\|$
 - **□ r**_i ∈ Q′。より||**r**_i||≦(1/q)||**S**||√n
- → (m/q)√n≦1/gと調整する

IncGDD

Input: **B**, **S**, **t**, $r > \gamma(n) \varphi(L(B))$

IncGDDを解く(||s-t||の不等式)

 $\square ||\Sigma_i z_i((\mathbf{c}_i + \mathbf{t}_i) - \mathbf{y}_i)|| \leq r?$

- $\square y_i \sim D_{L(B),s,ci+ti}$
- $\square \operatorname{Exp}[||(\mathbf{c}_i + \mathbf{t}_i) \mathbf{y}_i||^2] \leq O(s^2 n)$
- $\square \operatorname{Exp}[\|\Sigma_{i}z_{i}((\mathbf{c}_{i}+\mathbf{t}_{i})-\mathbf{y}_{i})\|^{2}] \leq \|\mathbf{z}\|^{2} \operatorname{s}^{2} n/6$
 - □ s=2r/γ>ηε(L(**B**)), ||z||≦√m, γ=√mnとすれば
 - $||z||^2 s^2 n/6 \le 2r^2/3$
 - Markovの不等式

IncGDD

Input: **B**, **S**, **t**, $r > \gamma(n) \varphi(L(B))$

MRo4 まとめ

- □ QをP(S)にした
- □n次元ガウス分布を使った
- □問題を変えた
 - IncGDD
 - cf: IncSIVP
- □近似度が小さくなった

未解決問題

未解決問題 – 計算量

- GapSVP_γ
- □ γ=cでNP-hard
 - [Khot 2004]
- □ γ=O(√n/log n)でNP∩coAM
 - [Goldreich-Goldwasser 2000]
- □ γ=O(√n)でNP∩coNP
 - [Aharonov-Regev 2004]
- □ 量子だとどうなるのか?
- □ ノルムを変えるとどうなるのか?
 - Norm-Embedding [Regev-Rosen 2005]
 - [Peikert 2006]

未解決問題 - a/w

- □一般の格子
 - [Ajtai '96] (OWFs?, O(n⁸), SIVP)
 - [GGH '96] (CRHFs, O(n⁸), SIVP)
 - [Cai-Nerurker '97] (CRHFs, O(n^{3+ε}), SIVP)
 - [Micciancio 2002] (CRHFs, O~(n³), SIVP)
 - [Micciancio-Regev 2004] (CRHFs, O~(n), SIVP)
- □特殊な格子
 - [Micciancio 2002] (OWFs, O~(n), Cyclic-SVP)
 - [Lybashevsky-Micciancio 2006] (CRHFs, O~(n), Ideal-)
 - [Peikert-Rosen 2006] (CRHFs, O~(n), Cyclic-)

未解決問題 - a/w

- □ 近似度O~(√n)のa/w-connection
 - □ 近似度O~(n)が最良 [Micciancio-Regev 2004]
 - □特殊な格子:O~(√n)? [Peikert-Rosen 2007]
 - Ideal Latticeより良い代数的な構造を持つ
 - ■整数環上のイデアルと同型な格子
 - ■決定版(GapSVP_v)は多項式時間で解ける
 - 誰か探索版(SVP_γ)を解いてみませんか?

未解決問題 - 格子暗号

- 1-bit Type
 - □ [Ajtai-Dwork '97] (O(n⁸)-uSVP, a/wあり)
 - □ [Regev 2004] (O~(n¹.5)-uSVP, a/wあり)
 - □ [Regev 2005] (近似度O~(n¹.5)のSVP, a/wあり)
 - □ [Ajtai 2005] (特殊なO(n¹.5)-uSVP, a/wなし)
- Multi-bit Type
 - □ [GGH '97] (CVPベース)
 - □ [NTRU '97](多項式環, NTRU-CVPベース)
 - □ [Cai-Cusick '98] (AD暗号+ナップサック)
 - etc

未解決問題 - 格子暗号

- □効率のよい格子暗号
 - [Ajtai 2005]
 - [☺]鍵 O~(n²) / 平文:暗号文=1:O(n log n)
 - ○特殊な格子の平均時の困難性
 - [Regev 2005]
 - [☺]鍵 O~(n²) / 平文:暗号文=1:O(n log n)
 - [☺]近似度O~(n¹.5)のSVP, SIVPの最悪時の困難性
 - ⇔帰着が量子帰着
 - [Kawachi-Tanaka-Xagawa 2007]
 - 平文:暗号文=O(log n):O(n log n)
 - ☺近似度が悪くなる
- □ 特殊な格子 (e.g., cyclic-, ideal-) を用いた暗号

未解決問題 - 格子暗号

- □数論系との比較
 - ■SVPからRSA問題への帰着はあるか?
 - (n,p,q,e,d)のdが小さいとLLLで解ける
 - dが小さくなくてもSVPが解ければ解けるか?
 - □一般に,格子問題から数論系の問題への帰着は?
- □ CCA-secureな暗号
 - □ 1-bit暗号だと辛い?

未解決問題 - 署名

- □ SVPの困難性に基づく署名方式の構成
 - GGH, NSS, NTRUSign
 - ⇔特殊なCVPベース
 - ⇔攻撃されたのでもうダメ
 - □一般的な構成法
 - ハッシュ関数+[Rompel 90, Naor-Yung 89]
 - 😕 効率が悪い, 面白くない
- □ (実は)できます
 - □ 公開鍵: O~(n²) / 秘密鍵: O~(n) / 署名長: O~(n²)
 - SVP_{O~(n)}の最悪時から署名のROMでの安全性を保証
 - □次の機会に

参考文献

- [Ajtai '96]
 - "Generating hard instances of lattice problems" (STOC 1996)
- [Cai '99]
 - "Some recent progress on the complexity of lattice problems" (ECCC 1999)
- [Micciancio-Regev 2004]
 - "Worst-case to average-case reductions based on Gaussian measures" (FOCS 2004)
- □ 他

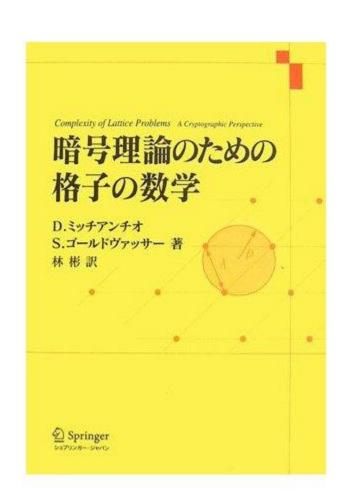
参考文献

COMPLEXITY OF LATTICE PROBLEMS

A Cryptographic Perspective

Daniele Micciancio Shafi Goldwasser





御清嬷 ありがとう ございました