東京工業大学 草川惠太 河内亮周 田中圭介

東京工業大学 草川惠太 河内亮周 田中圭介

R中のZ加群

格子問題の例

SVP:最短ベクトル問題

uSVP:唯一最短ベクトル問題

CVP:最近ベクトル問題

SVP L and omized Reductionの元で NP困難

量子計算機でも 難しいと考えら れている

現行のRSAや 楕円曲線暗号 は量子計算機 に弱しく

組合せ系暗号の一つ

安全性の保証があり 量子計算機に(多 分)

強いので(一部で)

Multi Lattice Problems

	ビット数	安全性
Ajtai-Dwork	1ビット	証明有
Regev03		
Regev05		
Ajtai05		証明微妙
GGH	複数ビット	証明無
NTRU		

ここでは Aitai-Dwork Regev03 を扱う

直観的な

暗号の説明

周期的な分布を 生成し周期を 秘密鍵とする

分布に従って 公開鍵a₁,...a_m を選ぶ

秘密鍵: d 公開鍵: a₁,...,a_m,j

公開鍵を 足し合わせると の暗号文

$$S \subseteq_{R} \{1,2,...m\}$$

$$E(0) = \sum_{i \in S} a_{i}$$

a_j/2でずらすと 1の暗号文

秘密鍵: d 公開鍵: a₁,...,a_m,j 暗号化: E(σ)= $\sigma \left(\frac{a_i}{2} \right) + \sum_{i \in S} a_i$

周期 d mod を取ると

暗号の安全性

暗号文の分布を 識別出来るなら 任意の格子問題 を解ける

Average-case Worst-case Connection

分布の分散と 安全性が関係

分散が小さいと 安全性は低くなる

時号の問題点

・鍵サイズが大きい ・平文今暗号文の 効率が悪い

暗号文の サイズを変えずに 平文空間を 大きくしたい

格子問題 に基づく 複数ビット **公開鍵暗号**

p=0(n^ε)個の 平文を埋め込む

スライドさせた 分布で埋める

秘密鍵: d 公開鍵: a₁,...,a_m, 暗号化: E(σ)= $\sigma(a_i/p) + \sum_{i \in S} a_i$

エラー確率が大きい

エラー確率を 抑えるために 分布の分散を 小さくする

分散を小さくすると 安全性が低くなる

平文の個数と 安全性の トレードオフ

	安全性	平文(ビット)	暗号文(ビット)
1ビット版	n ^{1.5} log n uSVP	1	8n ²
複数ビット版	n ^{1.5+ε} log n uSVP	ε log n	8n ²

(例:RegevO3)

	ビット数	安全性	
mAjtai-Dwork			
mRegev03	O (log n)	証明有	
mRegev05	ビット		
mAjtai05		証明微妙	
GGH	O (n)	=:T nD for	
NTRU	ビット	証明無	

擬似準同型性

暗号の準同型性 $E(m_1) + E(m_2)$ $= E (m_1 + m_2)$

擬似準同型性 $E_{1}(m_{1}) + E_{1}(m_{2})$ $=E_{2}(m_{1}+m_{2})$

Aitai05を 複数ビット化すると 実現可能

Ajtai05の説明

暗号化に ガウス分布を 用いる

N (m,s²) & 格子の基本領域 で mod する

Ajtai05の 擬似準同型性

ガウス分布の再生性

$$N(m_1,s_1^2) + N(m_2,s_2^2)$$

= $N(m_1+m_2,s_1^2+s_2^2)$

基本領域で modを取っても 再生性がある

$$E_{s_1^2}(m_1) + E_{s_2^2}(m_2)$$

= $E_{s_1^2+s_2^2}(m_1+m_2)$
が成立

同じ公開鍵・ が密鍵で 暗号化·復号可能

組合せ系では 見られなかった 性質

■複数ビット化

- ●1ビット暗号を暗号文のサイズを変えずに複数ビット化
- ●平文の個数と安全性のトレードオフ

■擬似準同型性

- ●Ajtai05を複数ビット化することで実現可能
- ●組合せ系では今までにない性質

■今後の課題

- ●nビット暗号かつ安全性証明がある暗号を作る □GGHやNTRUはnビット暗号だが安全性証明が無い
- ●擬似準同型性の応用

- Ajtai, Dwork (STOC '97)
- Goldreich, Goldwasser, Halevi (CRYPTO '97)
- **■** Regev (STOC 2003)
- **■** Regev (STOC 2005)
- Ajtai (STOC 2005)
- 高橋征義(高橋メソッド)