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Introduction

1.1 Backgrounds

After the seminal paper by Bie and Hellman[DH76], several cryptosystems
based on the number-theoretic problems were proposed, such as the RSA encryp-
tion schemelRSA7q, the EIGamal encryption schemgl{z85, and etc. They

have succeeded in the real life and academic world. We have used them in the real
life and have taught cryptography with exemplifying them.

Although there were several cryptosystems based on combinatorial problems,
less attentions were payed on them than to number-theoretical ones. In my opinion,
one of reasons is their fragile lives; several cryptosystems were cryptanalysed with
the proposed parameters after a few years from their proposal. For example, the
Merkle—Hellman “knapsack” encryption schenMH78] and their variants were
soon cryptanalysed in the realistic parameters. The other of reasons is tfieir ine
ciency; the above attacks are against the proposed parameters and, hence, they need
the larger parameter sets to bear the attacks. In addition, their inherent structures
yield huge public keys, say the quadratic or cubic order of the security parameter.

This situation was changed externally by a new threat on nhumber-theoretical
cryptosystems, i.e., Shor's quantum attac&sd97. These schemes were shed by
the light and provided much attentions. After this new threat, many researchers
have made strenuoufferts to construct secure schemes and found several combi-
natorial problems suiting to do.

An attractive one of them is lattice-based cryptography; it appeared in 1996
to construct one-way functions with average-¢asest-case equivalence in Aj-
tai [Ajt96], which rarely appears in number-theoretic problems and other com-
binatorial problems. Lattices have already appeared as the cryptanalytic tools in
cryptography. See the survei&di98aNSQO]].
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1.2. PRELIMINARIES

Lattice-based cryptography have bloomed in this two decades; we have ob-
tained hash functions, digital signatures, public-key encryptions, identity-based
primitives, and etc. and they enjoyed averagememest-case equivalences, that
is, their securities are based on the worst-case hardness of certain lattice problems.

In this thesis, we will review them and give some intuitions on the constructions
of them. The organization of this thesis is[@ection 1.B We first prepare the
notions and notation.

1.2 Preliminaries

In this section, we review basic notions and notation on probabilities, distributions,
hash functions, and protocols which will appear in this thesis.

1.2.1 Basic notions and notation

We define a negligible amount mas an amount that is asymptotically smaller
thann~C for any constant > 0. More formally, We say a functiofi(n) is a negli-
gible function inn if lim ,_,., n°f(n) = 0 for anyc > 0. Similarly, a non-negligible
amount is one which is at least® for somec > 0. We denote by the security pa-
rameter of cryptographic schemes throughout this paper, which corresponds to the
rank of the underlying lattice problems. We say that a problem is hard in the worst
case if there exists no probabilistic polynomial-time algorithm solves the problem
in the worst case with non-negligible probability. We sometimes®(ggn)) for
any functiong in n as O(g(n)-polylog(g(n))). We assume that all random vari-
ables are independent and uniform. For a positive integéet [n] denote a set
{1,2,...,n}.

Vectors will be denoted by bold italic, sayb, c, etc. Polynomials are denoted
by bold roman, sag, b, c. In addition, we denote vectors of polynomials by bold
italic with a check,d, b, & etc. We denote matrices by upper bold italic such as
A, B,C.

To denote a column vector with elements, we write elements in parentheses;
a=(a,...,am). If arow vector, we denote by, ..., an], elements in brackets.
We often compose a matrix. If we writ® = [A1|Az] with A; € S™Mand A, €
s™ Ais ann by (m+ |) matrix. If we write A = [A1; Az] where Az is annbym
andA; is anl by mthenAis an f + |) by m matrix.

For anyp > 1, thelp norm of a vectorx = (xy,..., %)) € R", denoted by
IXllp, is Rien xip)l/P. For ease of notation, we defifig|| := ||x||,. Thel, norm
is defined agiX|l, = liMp_ [IX|l, = MaXen [X|. Letwy(X) denote the Hamming
weight of x, i.e., the number of non-zero elementsirLet S(m, w) denote the set
of binary vectors in0, 1}™ whose Hamming weights are exactly equalitoi.e.,
S(mw) := {x € {0,1}™ | wy(X) = w}. We denote the concatenation of two vectors
or stringsvi andv, by vy o vs.

Bf(c,r) denotes am-dimensional ball centered € R" and with radiug > 0
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in thelp norm. We drom if the dimensiom is not ambiguous in the context. We
droppif p =2 and dropc if the center is the origin, that ig,= 0.

1.2.2 Probabilities and Distributions

Let ¢1 and ¢» be two probability density functions on a finite s&t We often
let ¢, indicate a distribution corresponding to probability density funcifan
vice verse. We define the statistical distance between two distribupipasd
@2 as A(d1, ¢2) = %ers |#1(X) — ¢2(X)|. Given two distributionsp; and ¢;
over R™, which are continuous, we define the statistical distance between them
asA(¢1, ¢2) = %erRm |#1(X) — ¢2(X)|[dX. We also use the same notation for two
arbitrary functions. Note that the acceptance probability of any algorithm on inputs
from X differs from its acceptance probability on inputs fr¥rhy at mostA(X, Y).

If A(-,-,...)is arandomized algorithm, then— A(xy, Xo, ... ;) means thay
is assigned the unique output of the algorithm on inpyi», ... and coing. We
often use the notatiop «— A(X1, X2, ...) as shorthand for first pickingat random
and then setting « A(X1,X2,...,;r). If Sis a finite set thers «— S indicates
that sis chosen uniformly at random fro®. If D is a distribution therx « D
indicates thak is chosen according to the distributién

We say two distribution®, andD; areperfectly indistinguishablig D, = Do,
denoted byD; ~p D,. They arestatistically indistinguishableéf A(D1, Dy) is
negligible in the security parameterthat is,A(D1, D») < n~“®). We denote them
by D; ~s D». They arecomputationally indistinguishabli for any polynomial-
time algorithm,

IPHAL", Xq) = 1] - PrA", Xo) = 1| < e,

whereX; is a random variable distributed accordingDe for i = 1,2 and the
probabilities are taken by, Y, and coins ofA. We denote them b, ~¢c D».
Let X be a random variable over a st Themin-entropyof X is defined by

He(X) = —log r)r(gxPr[X =X].

If Hoo(X) is log|S], X is distributed uniformly oves.

1.3 Organization

[Chapter Previews lattices, lattice problems, and relations and reductions among
the problems[Chapter Balso reviews ideal lattices, and more.[@apter 4 we

review hash functions based lattice problems and ideal lattice problerfEapt

we introduce simple string commitment schemes based on lattice problems.
[Chapter fyives two identification schemes which are variants of Stern’s identifica-
tion schemes and based on lattice and ideal lattice problems. Based on these two
schemes, we construct ad hoc identification schenj€sapter B As an interlude,
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we point out that Stern’s scheme yields zero-knowledge and proof-of-knowledge
protocols for NTRU irfChapter P[Chapter Ilsummarizes trapdoor generation al-
gorithms by Ajtai and by Alwen and Peikert and propose ideal versions of the trap-
door generation algorithmfhapter Iflreviews the signature scheme by Gentry,
Peikert, and Vaikuntanathan, which employs the above trapdoor generation algo-
rithms, and constructs a compact signature scheme following them. Combining
the signature schemes and the Micciancio-Vadhan identification scheme, we ob-
tain two identity-based identification scheméeGhapter ¥ Survey on public-key
encryption, key-encapsulation mechanism, and identity-based encryption schemes
based on lattice problems appeafGhapter 1R[Chapter 1B andChapter T}re-
spectively.[Chapter Ipproposes new lattice-based proxy re-encryption schemes,
which are based on several encryption schemes.




Lattices

Organization: [Section Z2.Igive the basic definitions and notions on lattiégsct
ffion 2.2reviews the problems on lattice appeared in the literatur&eletion 2.3
we briefly review the results on the hardness of lattice problem&ekiion 2.4
we give the review of the average-caAserst-case reductions.

2.1 Lattices

We first review fundamental notions of lattices.

A lattice is a discrete additive subgroup Bf". Formally, ann-dimensional
lattice A in R™M is the setL(by,...,b,) = {Ziem @ibi | @i € Z} of all integral
combinations ofn linearly independent vectolls,, ..., b, € R™ The sequence
of vectorshy,..., b, is called abasisof the latticeA = £(B) and denoted by
B = [by,..., by], whereB is anm by n matrix. Using this notation, we can write
A = {Bx | x € Z"}. Notice that a lattice has infinitely many bases. This can
be confirmed by checking th&uU is also a basis of for any unimodular matrix
U e Z™", which is a matrix with determinantl or 1. In this thesis, we only
consider the full-rank lattices, andimensional lattice ilR".

Theduallattice of A, denoted byA*, isA* = {x e R" : Vv € A, (X, V) € Z}. It
can be verified thatA*)* = A. If B is a basis of\, then the basis of the dual lattice
isB* = (B™Y)T.

For any setS = {si,..., s} c R" of linearly independent vectors, & =
{31, ..., %) be its Gram-Schmidt orthogonalization: for each[n],

5 S, ifi =1,
S = (5,3 =

S - Zje[i—l] WSJ', otherwise’
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Note that|3]|| < ||s]| for anyi € [n].
N In ttlelz norm, for any full-rank se§ c A, there is a basi$ of A such that
T < IS < (IS

Lemma 2.1.1 (Lemma 7.1, page 129/MGO0Z]). There is a deterministic
polynomial-time algorithmMGReduce that, given an arbitrary basi®8 of ann-
dimensional lattice\ and a full-rank set of lattice vectoiS c A, outputs a basis
T of A such that|ti|| < [I5]| for all i € [n].

Additionally, the Gram-Schmidt orthogonalization of a basis and its dual are
closely related.

Lemma 2.1.2([Reg04a Lecture 8]) Let {b,..., by} be an basis oA and let
{dy, ..., dn} be its dual basis in reversed ordet (= b}, ;). Thend; = bi/ ||5in
foralli € [n].

For more details on lattices, see the textbook by Micciancio and Gold-
wasserMGO02].

2.1.1 Lattice Constants

There are several constants for lattices which are independent of representations.
The most fundamental one is the length of the shortest vector. This is generalized
as successive minim/lf(A) fori € [n]: For everyi, thei-th minimum/lip(A) is the

radius of the smallest sphere centered in the origin containingarly indepen-

dent lattice vectors, that is,

AP(A) = min{r : dim(spanf N BP(r))) > i}.

Settingi = 1, /IE(A) stands for the length of the shortest vector in the latda
thelp norm.
The definition of the covering radiygA) is given by

u(A) = max{dist(x, A)}.
XpeRN

The name is from the fact thag,., BP(v, u(A)) = R".
Another lattice constant is the length of the shortest basis bf°(A). This is
defined as

biP(A)=_ min _[IBll,=__min max]b|.
B:a basis ofA B:a basis ofA i€[n]

In addition, we can define the Gram-Schmidt minimum as

—p . o . ~
bl'(A)=_min [IBllpb=_ min max|bl.
B:a basis ofA B:a basis ofA i€[n]

This constant is introduced explicitly iiGPV0E and implicitly in [Cai98H.
The smoothing parameter was defined by Micciancio and R&dBROJ]. Let
us consider the Gaussian function with variascand centerc € R" psc(X) =

6



2.1. LATTICES

expr||x — c|l? /9. Let us define the Gaussian distributiogy = psc/S". (we
have | .. vsc(X)dx = 1.) For a countable s& R", we extend the definition of
Ps.c 8SPsc(S) = Yxes psc(X). If ¢ =0, we often dropc from psc andvse.
Definition 2.1.3. For ann-dimensional lattice\, and positive reat > 0, we define

its smoothing parametegr(A) to be the smallest such thajp,s(A* \ {0}) < e.

As noted in[MRO7], p1/s(A* \{0}) is a continuous and strictly decreasing func-
tion of s lims,0p01/s(A™ \ {0}) = co and lims, p1/s(A* \ {0}) = 0. Then(A) is
also a continuous and strictly decreasing function.dfhis parameter was named
as “smoothing,” sinc®s. modP(B) is almost uniformly distributed oveP(B).
Precisely, we have the following lemma.

Lemma 2.1.4([MRQ7]). For anys > 0, ¢c € R", and a latticeA = £(B), the
statistical distance betweer . mod#(B) and the uniform distribution ove®(B)
is at most%pl/s(/\* \ {0}). In particular, for anye > 0 and anys > n.(A), the
statistical distance is at most

A(vsc modP(B), U(P(B))) < €/2.
For ann-dimensional lattice\ and a lattice vectox € A, we define

vsc(X) _ Psc(X)
vsc(A)  psc(A)

These quantities relate to each other. For example, we have the following rela-
tions.

Da,sc(X) =

Lemma 2.1.5(|]GPV0{ etc.). For anyn-dimensional latticeA,
A1(A) < bI(A) < An(A) < 2u(A) < VN - bl(A).

The following relations with the smoothing parameter play important roles in
the reductions.

Lemma 2.1.6(Lemma 3.2 [MRO7]). For any n-dimensional latticeA, n(A) -
A1(A*) < y/n, wheree = 27",

Lemma 2.1.7 (Lemma 3.1 [GPV0§ and Lemma 3.2[MIR07]). For any n-
dimensional lattice\ and positive reak > 0

ne(A) < bI(A) - \/% IN(2n(1 + 1/€)) < An(A) - \/% In(2n(1 + 1/¢)).

In particular, for anyg(n) = w(logn), there exists a negligible functiafn) such
thatn.(A) < 4/g(n) - bI(A) < v/g(n) - An(A).

Notice that, fore € (0, 1), we have that

\/}r IN(2n(1 + 1/¢€)) < VIn(4ne™1).

7
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Hence, for anyg(n) = w(logn), we have that

Vin(4net) < g(n)

by settinge(n) = 4n~9(V/INM+1 — o),
The following lemma clarifies the tighter relation betweg() andA7°(A”).

Lemma 2.1.8([Pei07 Lemma 3.5] usingBan9%). For anyn-dimensional lattice
A and positive reak > 0

\/% In@2n(1 + 1/€))

ne(A) < )

In particular, for anyg(n) = w(logn), there exists a negligible functiatfn) such

thatne(A) < /o(n)/AT(AY).

More on the smoothing parameter and Gaussian distributions: The next im-
portant property ofj. is the bound o, s ¢; for s > 1.(A) the output has the norm
at mosts+/n with overwhelming probability.

Lemma 2.1.9([MRO7, Lemma 4.4]) For any n-dimensional lattice\, pointc €
R", and realse € (0, 1) ands > r.(A),

1+
Pr [Ix—dl>syn] < —°<
X<_DA,SC 1— €

227",
Micciancio and Regev also boundeg:(A) by ps(A).

Lemma 2.1.10 ([MRQ7] implicit in Lemma 4.4, seelGPV0§). For any n-
dimensional lattice\, pointc € R", and realse € (0, 1) ands > r.(A),

1-¢€

l1+e€

Psc(A) €

, 1] ps(A).

We have another property of the smoothing parameteDgg, which was
shown in the proof of[Reg09 Lemma 3.11]. Let us consider the distribution
B~1Ds.s modg; (1) take a samplg from D, s and (2) outpuB~ty modg. Since
yisin A, the output lies irZg.

Lemma 2.1.11(Implicit in the proof of Lemma 3.11,[Reg09). For any n-
dimensional lattice\, realse € (0,1/2) and s > gn.(A),

A(B™ D s modg, UZ) < ——.
l-¢€

Proof. The proof is the same as the one of Redeed09. Let A be a random
variable distributed according ® 1D, s modq. Then, for anya € Z7,

ps(dA + AQ)
Zbezg ps(qA + Ab)'

Iir[A =a] =

8



2.2. LATTICE PROBLEMS

Suppose that we talesuficiently large satisfying.(A) < s/q, thatis,n.(gA) < s.
By the claim below in[Reg09, we have that

ps(QA + Aa) € (1 + €)s"det(@A)*) = (1 + €)(s/g)" det(\*).

Hence,
(L+e)(s/g)"deth?) [1-€ 1+e€
So(LFe)(s/gndethr) |1+e 1-€

In addition, we havégl — (3¢)| = 2 and|1 - (££)| = Z . Therefore, the statis-
tical distance is at most

—n

Iir[A: al €

n L
A(AU(Zg)) < T
and this completes the proof.

Claim 2.1.12(Claim 3.8, |Reg09). For any latticeA, pointc € R", and any reals
e > 0ands > n.(A),

(1-€)s"det(A*) < ps(A + ¢) < (1 + €)S" det(A”).
i
By the similar argument, we can show the following generalized lemma.

Lemma 2.1.13(Corollary 2.8,[GPV0{). Let A andA’ ben-dimensional lattices
with A’ C A. Then for any € (0,1/2), anys > n<(A’), and anyc € R",

A(Dp.sc modA’,U(A modA’)) < 2e.

The final lemma ensures the min-entropyyf s c.

Lemma 2.1.14([PRQ€). For any n-dimensional latticeA, pointc € R", reals
€ > 0ands > 2n.(A), and for everyx € A,

l+e
.2
1-¢€

In particular, for e < 1/3, the min-entropy oD, s is at leastn — 1.

D/\,S,C(X) S

2.2 Lattice Problems

We give the definitions of well-known lattice problems, the Shortest Vector Prob-
lem (SVP) and its approximation version (S\?}?

Definition 2.2.1 (Shortest Vector Problem, SVPThe problem SVPis, given a
basisB of a latticeA, finding the shortest non-zero vectoin A in thel, norm.

Definition 2.2.2 (Approximation version of SVP)The problem SV? is, given a
basisB of a latticeA, finding a non-zero vectorin A such that for any non-zero
vectorxin A, [Mlp < ¥ [IXIlp.
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We next give the definition of the gap version of Sﬁ/P

Definition 2.2.3(Gap version of SVP, GapSVPIror a gap functiory, an instance
of GapSVF§ is a pair B8,d) whereB is a basis of a lattic& andd is a rational
number. In YES input there exists a vectoe A \ {0} such thaf|vi|, < d, that is,
AJ(A) < d. In NO input, for any vectov € A \ {0}, |IVll, > yd, that is,A}(A) > yd.

Apparently, the smalley, the harder the problems, SyBnd GapSVP, are.
Peikert also define the variant of GapS\Pto-y-GapSVP in which we are
given a lattice having a vector shorter thgn).

Definition 2.2.4(GapSVR,). For functions{(n) > y(n) > 1, an input ta/-to-y-
GapSVP, GapSVE,, is a pair 8, d), where:

e B is a basis of am-dimensional lattice\ for which 11(A) < £(n),

e min; ||bi|| > 1, and

e 1<d<Z(n)/y(n).

Itis a YES instance ifl1(A) < d, and is a NO instance if1(A) > y(n) - d.

Note that, for any(n) > 2"/?, GapSVR, is at least hard as GapSY,Rsince
we can reduce the basis so thatA) < ||bj]| < 2"2 - min; N1l by using the LLL
algorithm [LLL82].

The shortest independent vectors problem gives also the base of the crypto-
graphic scheme.

Definition 2.2.5 (Shortest Independent Vectors Problem, SIVIPhe problem
SIVPP is, given a basi® of a latticeA, finding the shortest independent vectBrs
in A'in thelp norm. That is, findinds such that|S||, = AP(A).

Definition 2.2.6 (Approximation version of SIVR)The problem SV@is, given a
basisB of a latticeA, finding independent vecto&such that|S||, <y - AP(A).

The above definition is generalized with some lattice congtant

Definition 2.2.7 (Generalized Independent Vectors Problem, GIVH)e problem
GIVqu”p is, given a basi® of a latticeA, finding n linearly independent vectors
Sc Asuchthat|S|l, <y - #(A).

The Closest Vector Problem (CVPalso often appeared in the lattice-based
cryptography. We give the definitions of CYRhe approximation version C\EP
and the gap version GapC‘QP

Definition 2.2.8 (Closest Vector Problem, CVPhe problem CVP is, given a
basisB of a latticeA and a target vectdr, finding the closest vectarin A to t in
thelp norm, that is, finding a vectarsuch that for any € A, [lv - t|[, < [Ix - t]|.

Definition 2.2.9 (Approximation version of CVR)The problem CV@ is, given a
basisB of a latticeA and a target vectdr, finding a vectowr in A such that for any
vectorxin A, [V —tll, < y[IX = tllp.

10



2.2. LATTICE PROBLEMS

Definition 2.2.10(Gap version of CVP, GapCVP}or a gap functiory, an in-
stance of GapCV{Pis a triplet B, t,d) whereB is a basis of a lattice\, t is a
target vector iQ™, andd is a rational number. In YES input there exists a vector
v e A suchthatlv - t||, < d. In NO input, for any vectov € A, ||v - t[|, > yd.

In addition, we give the definition of Bounded Distance Decoding problem, a
promise version of CVP.

Definition 2.2.11 (Bounded Distance Decoding, BDDYhe problem BDD is,
given a basiB of an n-dimensional latticeA, a reald > 0, and a target point
t € R" such that dist; A) < d, finding the close lattice vectar € A such that
IIv—t|| <d.

We can give a generalized version of bounded distance decoding as follows:

Definition 2.2.12(Guaranteed Distance Decoding GPR). The problem GDIP
is, given a basi® of a latticeA and a target point € R", finding a lattice vector
Ve A suchthatlv - tf|, < y¢(A).

Computing covering radius for any lattice is also hard problem. We give the
definitions of the covering radius problem and its gap version.

Definition 2.2.13(Covering Radius Problem, CRPYhe problem CRPis, given
a basisB of a latticeA, finding the covering radiyg(A) of the latticeA.

Definition 2.2.14(Gap version of Covering Radius Problem, GapCRIFor a gap
functiony, an instance of GapCI@Ps a pair 8, d) whereB is a basis of a lattica
andd is a rational number. In YES inpuig(A) < d and in NO inputsy(A) > y-d.

Micciancio and Regev defined a new problem, incremental guaranteed distance
decoding problem, IncGDD which is the variant of IncSIVP in Ajiajtp6o].

Definition 2.2.15(Incremental Guaranteed Distance Decoding, INcGBR07]).
An input to IncGDE%j is a quadruplet®, S, t,r), whereB is a basis for a full-rank
lattice A in R", S c A is a full-rank set of lattice vectors,e R" is a target point,
andr is a real withr > y - ¢(A). The problem is finding a lattice vecter A such

1
that|lv - t||, < i ISIp + 1.

Gentry, Peikert, and Vaikuntanatha®RV0{ pointed out that a slightly sim-
pler problem sffices for the reductions in Micciancio and Reg®H07]. The
problem is incremental independent vectors decoding problem InclVD defined as
follows:

Definition 2.2.16(Incremental Independent Vectors Decoding, IncN@&PNV0§).
Aninputto IncIVD% is a triplet B, S, t), whereB is a basis for a full-rank lattice
AInR", S c Ais afull-rank set of lattice vectors such thi@|, > y - ¢(B), and
t € R"is a target point. The problem is finding a lattice veator A such that
IV = tllp < [ISilp /9.

Finally, we review the discrete Gaussian Sampling problem (DG $ég09.

11
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Definition 2.2.17 (Discrete Gaussian Sampling, DGB€gg09). The problem
DGS; is, given a basi8 of ann-dimensional lattice\ and a reak > ¢(A), sam-
pling from Dy s.

Reductions from lattice problems tolnclVD

The basic reductions appeared in the textbook of Micciancio and Gold-
wasser[MGO02]. We here show reductions from several lattice problems, GIVP,
GDD, GapCRP, and GapSVP to InclVD. These problems will be the underlying
problems of several cryptographic primitives in this thesis through InclVD.

Micciancio [MicO7] and Micciancio and RegetMRO7] showed these reduc-
tions to IncGDD. Gentry et alGPV0{ improved the average-caamrst-case re-
ductions and noted that there are reductions from GIVP, GDD, GapCRP to InclVD,
but they omitted the proofs. For completeness, we prove them by modifying the
proofs (or the proof sketches) iMic07, MRO7].

Lemma 2.2.18. There is a lattice-preserving polynomial-time reduction from
GIVP}P to IncIvD??.

Y Y,
Proof. The proof is an adapted version of the onelifid07, Lemma 4.6]. We
define the reduction algorithm as follows:

1. Scani € [n] such that|s|l, = [ISp.

2. Let t be an orthogonal vector of lengthS|,/2 to the hyperplane
spanés,...,S-1,S+1,---» S)-

3. Invoke the oracl® on (B, S, t) and obtairv € A.

4. If O fails outputS.

5. ReplaceSwith S =[si,...,S-1,V, S+1,-.., Sn] and go to Step 1.

Suppose thatis a valid solution of IncIVIﬁ ‘Poninput B, S, t). Then, we have
that|lv - tll, < [ISllp /4 and, hencey is not mcluded in the hyperplane spanned by
St,...,S-1, S+1, - - - » Sn, Which shows the linear independencesbic A. We also
have thatvll, < [Iv = tllp + [1tilp < IS/l /4 + ISl /2 = § ISl

Hence, by repeating the above procedure until the or@chails, that is,
ISllp /4 < y¢(A), and we obtain the short linearly independent vec®rs A
with [ISllp < 4y - ¢(A). m|

Lemma 2.2.19. There is a lattice-preserving polynomial-time reduction from
GDD} to IncIVDY,.

Proof. As in the proof in[Mic07, Lemma 4.7], by applying the reduction algorithm
in the previous proof, we obtain a full-rank s&g A such that|S||, < 4y - ¢(A).
Since Micciancio’s proof for the reduction to IncGDD exploitedve give another
reduction algorithm for a reduction to InclVD, which explo8s

After obtainingS, we then run the following algorithm:

1. Scani € [m] such thaf|s|l, = [ISl|, and sefj « 1.

12
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2. Repeat the following procedure.
@ SV« [sy,...,5-2, 28, Su1, ..., S0l
(b) Invoke the oracl® on input B, S, t) and obtairv.
(c) If ve A and]v - tl|, <ISV||,/4 then output.
(d) Otherwise, incrementand go to step (a).

Notice thatS is full-rank (since de®&V) = 2l det©) # 0) and||SV||, =
21SU-D)lp. We now consider the final step Then, the check must fail in the
(j — 1)-th repeat and we have tHi8UI-V||, < 4y - ¢(A). Thus,|SD||, < 8y - ¢(A)
and we can upper bourligt — t||, < ISD[lp/4 < 2y - ¢(A), as required. O

Lemma 2.2.20([MRQ7, Lemma 5.12]) For anyy = y(n), there exists a lattice-
preserving randomized reduction froBapCRP to GDD;%. In particular, there

is a lattice-preserving randomized reduction fr@apCRR, to IncIVD””4.
Y,

The proof is in[MRO7].

2.3 Hardness of Lattice Problems

We discuss the hardness results on lattice problems.

The NP-hardness of C\PHor any p was shown by van Emde BoasHB81).
Arora, Babai, Stern, and SweedykBSS97 showed the NP-hardness of C¥Y/P
for any constant. Dinur, Kindler, Raz, and SafrdDKRS0J improved the ap-
proximation factor to 9(gn/loglogn) — pl/leglogn “on CVP,, the major problem is
showing NP-hardness for approximation faatdfor small constan¢ > 0.

The first result of the NP-hardness of SVP is van Emde BeaB81] which
showed for thel,, norm. Later, Ajtai JAt98] showed that SVP is NP-hard
under randomized reductions fer = 1 + 27" for some constant. Cai and
Nerurkar [CN97] improved the approximation factor11/n¢ for any fixede > O.
Micciancio gave the proof for approximation factof2 under RUR-reductions
in [Mic0Q]. Khot [KhoO€] showed that, assuming N ZPP, SVF§ fory = pt
is intractable for all integerp > p(e). Khot [KhoO0F proved that SVRis NP-hard
under the assumption N@ RP for any constant. He also proved that SV\Hor
y = 2010gn*) js NP-hard within under the assumption IEARTIME (2P0ly(iogn)y
Haviv and RegevliIR07] improved the approximation factor to = 2009W"™ for
anye under the same assumption.

Even within a polynomial approximation factor, it is unknown whether there
exists a polynomial-time algorithm for the approximation version of SVP. The
most well-known solution to this approximation problem is the so-called LLL algo-
rithm proposed inllLL82]. This algorithm can solve S\iR: in polynomial time.
SchnorrBch87 generalized the LLL algorithm which solves Syfor y = (1+c)"
for any constant > 0.

There are several exponential-time algorithms for SVP and CVP. For the old
results, see the surveAEVZ02]. Ajtai, Kumar, and SivakumaiAKSO01] pro-
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posed the randomized algorithm for SVP which runs in exponential time of the di-
mension. Nguyen and VidiclfNV08] implemented this and clarified the time and
space complexity of this algorithm, the time@25°") and the space §(229%),
which improved the analysis by RegeéRdg04a Lecture 8]. This is improved

by Micciancio and VoulgarisMV09], whose probabilistic algorithm runs in time
2319 and space B32™. (Very recently, they also proposediaterministicalgo-
rithm running within time £ [MV10], which will be verified by peer reviews.)

On the other hand, there are several non-NP-hardness results on the approx-
imation version of SVP with a polynomial approximation factor. Goldreich and
GoldwasserlGG0( showed SVB(W) is in NP n coAM. Aharonov and
RegevIARO3] showed that SVE 5 is in NPN coNP.

The unique shortest vector problem (uSVP) is also well known as a hard lattice
problem applicable to cryptographic constructions. We say the shortest vextor
a latticeA is f-unique if for any non-zero vector € A which is not parallel toy,

f IVl < |IX]]. The definition of uSVP is given as follows.

Definition 2.3.1(f-uSVP) Given a basi8 of a latticeA whose shortest vector is
f-unique, find a non-zero vectore A such that for any non-zero vectare A
which is not parallel tav, f ||v|] < |IX]|.

Similarly to the case of SVP, the exact version of uSVP is shown to be in NP-hard
by Kumar and SivakumaiKS0]]. Cai [Cai98l showed thaQ(n'/4)-uSVP is in
NP N coAM.

In addition, recent results by Lyubashevsky and Miccian&ibIQ9] indi-
cates the relations on GapSVP, BDD, and uSVP. They showed, up to a small
polynomial factor+/n/logn, the equivalence of the uSVP, BDD, and GapSVP;
GapSVE = uSVP, for anyy > 1, BDD% \/7Togn > GapSVE fory > 24/n/logn,
and uSVR > BDDy, (2 fory > 1.

2.4 Average-CasANorst-Case Reductions

Before giving the reviews of the reductions, we first review lattigeary lattices
which are relevant to linear codes.

2.4.1 Linear Codes andy-Ary Lattices

Linear Codes: We start with the definition of codes and linear codes.1 be a
finite alphabet of sizg and letm be a block length. Then a code is a subs&t"af
LetF = Fq be a field of cardinalityy. Then a linear cod€ is asubspacef Fy.
The dimension of the codg is naturally defined.

We sayG as a generator matrix of if C = (G'se F™ | s€ F"}. We sayH as
a parity-check matrix of if C = {e€ F™" | He = 0 € F"}.

For a matrixA € F™™M, a code having a generator matixis denoted by
Ce(A), that is,{ATs € F™ | s € F"}. A code having a parity-check matrix is
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denoted byCH(A), that is,{e e F™ | Ae = 0}.

g-ary lattices:  For a matrixA € Zg“™, we define two sublattices @™,

Ag(A) = {peZ™|Is ATs=p (modq)},
Ag(A) ={e€Z™| Ae=0 (modaq)}.

It is obvious that two sets are lattices because they are discrete and additive sub-
group ofZ™. It is also obvious thagll c Aq(A), Az(A). Hence, they are super-
lattices ofqZ™ and thus full-rank.

In addition, you can confirm that they are relevant to linear codes. The former
lattice Aq(A) is gZ+Cg(A), where+ denotes the Minkowski sum. The latter lattice
Ag(A) is alsogZ + Cu(A). By a simple calculation, we confirm thak{(A))* =
1AJ_(A)

Lemma 2.4.1. For any matrixA € Z™, (Aq(A))* = %]AqL(A).

Proof. (2) Consider any vectoe € AqL(A). We show that, for any vectoy €
Aq(A), (ée, y) € Z. Sincey is in Aq(A), there is some vects € Z" such that
y = ATs (mod qg). Hence,

(eyy=e'ATs=0"s=0 (modq).

This shows thatge, y) € Z and (\q(A))" 2 FAG(A).

(S) Instead of the statement, we show the tautological stateqfag{A))*
Ag(A). Consider any vectox in (Aq(A))* and suppose thajx is notin Ag(A).
By this hypothesis, we have thgAx # 0 (modq), which indicatesAx ¢ Z".
However, the transposes of the rowsffs in Aq(A) and Ax must be inz". This
means a contradiction and we complete the proof. |

The reason of why we need these lattices is clarified in the follow-on sections.

2.4.2 From the Small Integer Solution Problem

We define the Small Integer Solution problem SIS (inltheorm), which is often
considered in the context of average-¢agest-case connections and a source of
lattice-based hash functions as we see later.

Definition 2.4.2 (SISp [MRO7]). For a fixed integeig and a real3, given a
matrix A € Zg*™, the problem is finding a non-zero integer ve@ar Z™ such that
Ae=0 (mod g) and|lell, < B.

Definition 2.4.3 (ISISFJ [MROY]). For a fixed integerj and a real3, given a
matrix A € Zg<™ andu € Z” the problem is finding an integer vec®e Z™ such
thatAe=u (mod a) and||e||IO <B.
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The former problem Sl§nﬁ is indeed lattice problem for thg-ary lattices:
Given a matrixA, find the short non-zero vecterin the latticeA; (A) such that
llell, < B. This problem is firstly appeared with no explicit name in the seminal
paper of Ajtai Ajt96]. The latter problem ISI%W is also lattice problem for the
g-ary lattices similar to CVP; Consider the lattiag (A) and find a vectot € Z™
such thatAt = u (mod q) by using the linear algebra. Then, find the lattice vector
v e Agz(A) such thatlv - t||, < . Finally, sete = v - t.

In this thesis, we review the average-¢gas@st-case reductions to SIS, which
is initiated by Ajtai JAjt96] and followed several improvemeni&€GH96 [CN97,
Mic04, MRO7, [IGPV0{, especially, the reduction by Gentry, Peikert, and Vaikun-
tanathanlGPV0§.

Ajtai originally proposed the reduction from IncSIVP to SIS, Cai and
Nerurkar [CN97 and Micciancio [Mic04] followed this. This is simplified by
Micciancio and Regev introducing the new problem IncGDD. Finally, Gentry et
al. improved it by showing the reduction from InclVD. In this thesis, we use the
intermediate problem InclVD, instead of IncSIVP and IncGDD to reduce the dis-
cussions.

Gentry et al.’s reduction

Using the direct sampling of lattice points, they make a simpler reduction. We
quickly introduce a sampler algorith8ampleD which, given a basi$ of a lattice
A suchthaf/T|| < L, areals> L-w(+/logn), and a centet, samples a vectaron a
lattice A. The distribution of output is within a negligible distance fr@y s¢. For
the details ofSampleD, sedSection 10.4 To simplify notation, we consider that
we can directly samplg from Dy s¢ instead of usingampleD, which introduces
negligible errors.

The reduction algorithm of Gentry et al. is as follows:

1. (Setup) Choose an index « [m]anda « {-8,...,-1,1,...,8} uniformly
at random. Let; = gt € R"and letc; = 0 € R" otheri € [m] \ {j}. For
reducing to ISIS, choose « Zg uniformly at random. For reducing to SIS,
setu = 0. Letx; = o tu modqandx; = Ofori € [m] \ {j}. Define the matrix
X = [X1,...,Xm] € Zg*™. UsingMGReduce, obtain a basi¥ of A(B) such
that||TIl < [ISI < [IS].

2. (Sampling) Lets = %llSﬂ. For each € [m], sampley; < Dj(g)sc. Define
the matrixY = [y1,..., ym] € R™™. DefineA = (B~1Y + X) modag.

3. (Invoking and Combining Invoke the oracl€ on (g, A, u,83) and obtaire €
Z™. Output the vectoy = %Ye

Theorem 2.4.4(]GPV0{). Letm = m(n), g = q(n), 8 = B(n), vy = y(n) be
polynomially-bounded functions. For agy> y-w(+/logn), The above reduction is
a probabilistic polynomial-time reduction from solvitrglVD< for y = g8 vnin
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the worst case to solving eith8tS; ms or ISIS;mps on average with non-negligible
probability.

In a typical case we often saet = O(nlogq), 3 = vm, andg constant and
obtainy = O(n+/logq) andq = O(n).

Combining the above witihemma 2.2.T8and[Lemma 2.1.lf the following
corollary holds.

Corollary 2.4.5 (Implicitin [GPV0§). Letm, q, 3, y be as in the above. There is a
probabilistic polynomial-time reduction fro@IVPZ; in the worst case t&I1S;mg
or ISIS;mg on average.

In particular, lete = e(n) be some negligible function im Then, we have a
probabilistic polynomial-time reduction fro@IVP,. in the worst case t&IS;mg

or ISIS;mp on average, wherg’ = y(n) - w(4/logn) = 48 vn - w(+/logn).

Proof: We include the proof of theorem to consistency. The following sequence
of claims show the correctness of the reduction.

Claim 2.4.6. For any valuesj and «, the distribution ofA is statistically close to
uniform overZg*™. In particular, O outputs a non-zero solutioe Z™ such that
€j = a with non-negligible probability.

Proof. We haves = [|S||q/y > [Tl - w(+/logn) and the output of the sampling
algorithmSampleD is distributed within negligible distance froBi,(g) s

We also havelS|| > y - n.(L(B)), sos > q- n(L(B)) = n(a£L(B)). Thus,
the distributiony; modgB is statistically close to uniform ovef(B)/gZ£(B). This
shows the statistical closenessapf= (B~1y; + x;) modq to the uniform ove%Q.
Sincey; are independent armd = poly(n), the matrixA is also distributed within
negligible distance of the uniform ovZQX"‘. Hence,O outputs a valid solutioe
with non-negligible probability.

We can assume that the solutien# 0, e has non-zero coordinate €
{-B,...,-1,1,...,8} for somek € [m]. This indicates the probability thgt= k
anda = e is negligibly close to 1(28m) = 1/ poly(n) since the reduction algo-
rithm chooseg anda uniformly at random. |

Claim 2.4.7. If eis a valid solution and; = a, the outpulv is a lattice vector of
L(B).

Proof. Notice thatv € £(B) if and only if B~1v € Z™. Thus, it siffices to show that
%B‘lYe € Z™, that is,B~1Ye € gz™. By the definition,B~1Y = A — X (mod ).
Hence, we only need to show thae = Xe (modq). If ¢ = o, Xe = a - Xj =
u modg. In addition,Ae modq = u if eis valid. This completes the proof. 0O

Claim 2.4.8. If eis valid andej = a, then|v - t|| < Wln) |S|| with overwhelming
probability.

Proof. From the hypothesis, we have that éCe whereC = [cy,..., Cy]. For
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2.4. AVERAGE-CASEEWORST-CASE REDUCTIONS

eachy;, letw; = y; modgB and defineV = [wi,...,Wmn]. Notice thaty; is dis-
tributed asw; + Dqz(B),sc-w - NOte also that the input( A, u, 5) is dependent only
W andX. Hence, the vector—t = é(Y — C)eis distributed as

1 1 1
“(W-Ce+= > & Da@saw == ), & (Docwysa-w + Wi - ).
q ie[m ie[m]

Let z be a sample fronDq,(B) sc-w- SO, the vectow — t = éZie[m] §7z. Since
s> - ne(L(B)), we can use the lemma 2.1.11 and obtain that the probability

Pr [llz - (¢ —w)ll > svn]

z<Dqs().sc-w

is negligible. Thus, we have each lengthzof y; — ¢ is at mosts+/n and by the
norm bound, the sum is with overwhelming probability

BRI _ lisl
~g(n)’

1 1
Iv=tl< D) alial < Slidlsvn<

iefm]

Hence, the norm is upper bounded|8}f /g with overwhelming probability. O

The reduction of Micciancio and Regev

In [MRO7], Micciancio and Regev gave another reduction from GapSVP to SIS
through GapCVP and a variant Si& SIS. Notice thag is slightly larger than the
the reduction from SIVP to SIS.

Theorem 2.4.9(Lemma 5.5 and Theorem 5.23VIR07]). For any polynomially
bounded functiong = B(n), m = m(n), odd integery = q(n), with q > 4y/mn¥/?g
andy = y(n) = 14r+/nB, there exists a probabilistic polynomial-time reduction
from solvingGapSVF in the worst case to solvin§l§, ms on average with non-
negligible probability. In particular, for anym(n) = ®(nlogn), there exist odd
integerq(n) = O(n?>°logn) andy(n) = O(n+/logn) such that solVin@I§,; m ym ON
average is at least as hard as solvigpSVF in the worst case.

Peikert examined the reduction to GapSngg’and it succeeded. For details,

see |Pei0d. We note that we have not examined Gentry et al.’s technique can be
applied to this reduction and this is an open issue.

2.4.3 From the Learning With Errors

The learning with errors (LWE) problem is a generalization of the learning parity
noise (LPN) problem, proposed by Reg&ep09.

To start the review, we recall the definitions of the distributions appearing the
definition of the LWE problem. Later, we define several versions of the LWE
problem.
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Gaussians: The Gaussian distribution with mean 0 and varianéedenoted by

N(0, o?), is defined by the density functiqﬁ\%_ﬂ - expx?/202) overR. By

the tail inequality, we have RH > to] < 1 -exp(-t?/2), wherex « N(0, o*2).
Folded Gaussians:Fora € (0,1), ¥, denotes the folded Gaussian distribution
overT = R/Z [Reg09, obtained by (1) take a sampkgfrom N(0, ?/2x) and

(2) outputx mod 1. We have Rry, [IX > 1] < - exp(nt?/a?) by simple

calculations. Often, we seéta constant and = 1/w(4/logn) to ensure that
the right hand side is negligible im

Discretized distributions: For any probability distributiog overT and a pos-
itive integerq € N, ¢ denotes the discretization pfoverZgq; the distribution
is defined by the following procedure, (1) take a sampte ¢ and (2) output
LgX] moda.

The LWE oracle for x: For s € Zg and a distributiony over T, let Ag, be a
distribution overzg x T defined as follows: (1) take samplas« Zg and
X « y and (2) output&, a' s/q + X).

The LWE oracle for y: For s € Zj and a distributiony overZ,, let Agy be a
distribution overzg X Zq defined as follows: (1) take samplas« Zg and
X « y and (2) output &, a' s+ Xx).
For simplifying expressions, we defig ; for a matrixS € ng' as follows:
(1) take samplea « Zg andx « X' and (2) output, a’ S+ x).

We define the learning with errors (LWE) problem as follows:

Definition 2.4.10 ((Search) Learning With Errors)The (search) LWE problem
with respect tog andy, denoted by sLWEY, y), is finding s € Zg given oracle
access tdAg,. The (search) LWE problem with respectdandy, denoted by
SLWE(@, x), is findings € Zg given oracle access #.

Definition 2.4.11((Decisional) Learning With Errors)or an integeq = q(n) and
a distributiony overZg, the (decision) learning with errors problem dLV¥E() is
distinguishing the oraclés, from the oracleJ(Zg x Zg) for a uniformly random
seZh.

Inqaddition, for an integeq = q(n) and a distributiory overT, the (decision)
learning with errors problem dLWE() is distinguishing the oracl8s, from the
oracleU(Zg x Zg) for a uniformly randons € Zg,.

These problems are closely related to the decoding problem with a random
linear code|Reg09. Considemsamples;, pi = (&, S)+ ;) from Ag;. These can
be considered ag\( p), whereA = [ay, ..., am] and p= AT s+ x. The SLWE(, 1)
problem can be stated as coding problem as follows: Given a random generator
matrix A € Zy™ and p = ATs + x, wherex « y!, the problem is decoding
In addition, the dLWHE{, ) also can be stated as coding problem; given a random
generator matrid e ngm andp, the problem is deciding is random or not.
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Note that an adversarfl distinguishingAs, andU(Zg x Zq) with advantage
implies an adversary distinguishirg;, andU (ZjxZ,) for S « Z;, with advantage
/1. The proof is simply obtained by the hybrid lemni&MWO0§.

Main Reduction

These LWE problems already has the average/easst-case reductions. We
start with the reduction from the worst case of dLWE() to the average case
of dLWE(q, ).

Lemma 2.4.12(Average case to Worst cagedg09). Suppose that there is an al-
gorithmA that distinguishe#\s; fromU in time T and with noticeable advantage

€, where the probability is taken over the coin of the algorithm, the samples from
the oracle, ands < Zg. Then, there is an algorithi8 that, for anys € Zg, distin-
guishesAgs; fromU in timepoly(T, n, logg, 1/¢) with overwhelming probability.

Proof SketchFor s’ € Zj, we define the mappings : Zg X Zq — Zg X Zq by

Ts(a,p) = (a(as) + p). Obviously, Ty mapsAsy andU to As,s ; andU,

respectively. The lemma immediately follows from this random self reducibility.
o

Lemma 2.4.13(Decision to SearchiReg09). Suppose thag = poly(n). Then, if
there is an algorithm that, for ang e Zg, distinguishedAs; fromU in timeT and
with overwhelming probability , then there exists an algorithm that, foraayg,
findssfrom Agy in timepoly(T, n, g) and with overwhelming probability.

Proof SketchWe construct an indicataf which outputs thg-th coordinates; of
sfrom Ag; with oracle access to the distinguisier For anyk € Zy, we define a
random mappind defined by

Tw(a p) =(a+!-ij, p+Ik)

wherel « Zg. If kK = s5, Tx mapsAsy to itself. Otherwise,Tx mapsAsy to
U sinceq is a prime. Sincey is polynomially-bounded by, the findings; is
straightforward; examine ald € Z. O

The following reduction is obvious if we take a precision witfiogn).

Lemma 2.4.14(Discrete to Continuousjeg09). For anyq andy, if there exists
an algorithm that, for ang € Zg, findssfrom Ag - in timeT and with overwhelming
probability, then there exists an algorithm that, for asig Zg, findss from A, in
time O(T, log g, n) and with overwhelming probability.

Even ifqis not polynomially-bounded, there is a decision-to-search reduction
whengq is a product of distinct polynomially-bounded primes.

Lemma 2.4.15(Decision to SearctHei0d). Suppose thaq = []icjy 0 is @ prod-
uct of distinct primes im. Suppose alse = «a(n) € (0,1) be a real such that
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g > w(y/logn)/a for anyi € [t]. Then, if there is an algorithm that, for any
Se Zg, distinguishesAgy, fromU in time T and with overwhelming probability
, then there exists an algorithm that, for asye Zg, findss from Agy, in time
poly(T, n,t, max g;) and with overwhelming probability.

The proof appeared iiPei0f and he wrote that the idea is due to Regev.

Proof. Obviously, we can factag into [; g; in time poly{, max q;). By shifting s
as in the average-to-worst reduction, we only need a power to dgcil® modg;
foranyi € [tjand | € [n].

Define the random mapping

T:(ap = (a-r-(@/a)-ijp)

wherer « Zg. If s; = 0 modg;, T mapsAgy, to itself. Suppose thag; = 0
mod g;. Then, obviouslya’ = a—r - (g/q) - ij is uniformly random. We have that

P =p=(a9/q+x=(a,9/q+ (rsj/g +X) €T,

wherex « ¥,. Sinceq; is a prime,rs; is uniformly distributed oveZ. Since
a > w(4/logn)/q > ne(q—liZ) for some negligibles, the distribution ofrs;/q; +
emod 1 is withine/2 statistical distance from uniform ov&rbyLemma 2.1.4
This completes the proof. ]

Finally, we recall the theorems by Reg#&gg09 and Peikert[PeiOg.

Theorem 2.4.16(Regev|Reg09 and PeikertPei0f). Letn, m = m(n), g = q(n)
be integers andr = a(n) € (0,1) be such thairq > 2+/n, m = poly(n), and
q = 290 If there exists an gcient algorithm that solvesLWE(g, m, ¥,), then
th(—:tre~ exists anfgcientquantumalgorithm that solve$&apSVPE and SIVP, with
v = O(n/a) in the worst case.

Alternatively, letn and m = m(n) = poly(n) be integers. Letr = a(n) be a
real number andy = y(n) > n/(a+/logn). Let = ¢(n) > y andqg = q(n) >
(¢/ Vn) - w(+/logn). Then, there is a probabilistic polynomial-time reduction from
solvingGapSVR,, in the worst case to solvingl WE(G, m, '¥,,).

Regev’'s Reduction

We first review Regev’s reduction from DGS to sLWE¥,). The reduction is
divided into twofolds. The classical reduction is from sLWE¥,,) and a sampling
problem with respect tB, sto CVP onA*. The quantum reduction is from CVP to
the sampling problem with respectip, s. We only give intuitions on the quantum
part of the reduction.

Classical part: More precisely, the former reduction is described as follows:
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Theorem 2.4.17.Lete = €(n) be a negligible functiong = g(n) > 2 be an integer,
a = a(n) € (0,1). If there exist algorithms that soh& WEqy, and DGS; for
¢ = V2q- 5, then there exists an algorithm that soI\BsBDaq/(\/zr).

Precisely, there is a classical probabilistic polynomial-time algorithm
R(B,r, x) that, given a basidBB of an n-dimensional latticeA, a numberr >
V2g-n.(A*), and a target poink within distancexg/( V2r) of A, and given access
to

1. an oracle'W that solvesLWEgy, usingpoly(n) samples, and
2. an oracleS that generates samples frobn- r,

findsv € A closest tax with overwhelming probability.

We start by defining a technical problem BfSDwhich has a connection to
SLWE.

Definition 2.4.18. For q > 2, the problem BDIY is, given a basi® of ann-
dimensional latticeA and a numbed < 11(A)/2, findingw modq € Zg such that
Bw is the unigue closest vector o

Regev showed the following reduction.

Lemma2.4.19Lemma 3.5,Reg09). There is a lattice-preserving reduction from
BDDg to BDDY if d < A1(A)/2.

Since ag/(V2r) < A1(A)/2, it is sufices to constructR’ that solves

BDD with help of the oracle$ andW .
aq/(V2r)

Letv be a solution of B, r, x). We letsdenoteB~'v mod . In order to generate
a sample fromAgy , take a sample/ from Dy, letsa = (B*)Ty modg, and
outputs
(& p=(y,x)/q+xmod 1)

wherex « N(0, a?/4r). By the construction, we have that

X /0+ X =Y, V/q+ Y, X =V)/q+ X
= (BTy, Blv) + (y, X — V)/q + X
=(a, 9+ (Y, Xx—-Vv)/q+xmod 1

As we already seen in the reduction to S#ds almost uniformly distributed
overzy, sincer > V2q- nc(A%).

To ensure thaty, x — v)/q + x mod 1 distributes as a continuous Gaussian, we
use the following claim that says that the sum of a Gaussian over a lattice and a
continuous Gaussian distributes statistically close to another continuous Gaussian.

Claim 2.4.20(Claim 3.9, Reg09). LetA be a lattice andi € R". Letr andsbe
two positive integers, and letdenote Vr2 + s2. Suppose thats/t => n.(A) for
somee € (0,1/2). Consider the distributiotyY onR" defined as follows: (1) take
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a sampley « Da.uyr, (2) take a noisex « vs, and (3) outputy + X. Then, the
statistical distance betweéhandy; is at mos#e.

Following the claim, we obtain the corollary below.

Corollary 2.4.21 (Corollary 3.10,[Reg09). LetA be a lattice andl, z € R" vec-
tors. Letr, « > 0 be two reals. Suppose that

for somee € (0,1/2). LetB denote the distribution sampled as follows: (13-
U+ Dar_u, (2) X < N(0,a?/2n), and (3) outputz v) + x. Then, we have

A(B, N, (r? ||z + a?)/2n)) < 4e.

In particular,
A(B mod l‘Pﬂ) < 4e,

wheres = /(r ||2])? + a2

Conditioned org, the distribution ofy is Ba + Dga r,-ga. In addition, we have
that

1 rqa

2 2
\/riz +(\/§g>;—vll) \/q2a2+2r2||x—v||

> sz > - 7e(A) = 7(qA),

where we uséix — V|| < ga/(V2r). Now, by the corollary(y, x — v)/q + x mod 1
is statistically close t&, for somea’ = \/(r IX — Vil /Q)2 + @?/2 < «. Since the
solverW also solves sLWgy , whena’ < a (see |Reg09 Lemma 3.7]), we can
recovers by the oracleW for sSLWE(Q, ¥,,).

Quantum part:  Turning into the latter reduction, Regev constructeddhan-
tumsamplerS for D, N from BDDy.

Theorem 2.4.22([Reg09 Lemma 3.14]) There exists anfgcient quantum algo-
rithm that, given a basi8 of ann-dimensional lattice\, a numberd < 11(A*)/2,
and an oracle that solveBDDy on a dual latticeA™, outputs a sample from
D vir(vaa):

Intuitively, BDDy can be used tancomputethat is,|X)|X + €) +— |0)|X + €)
for any x € A* ande with norm at most. We note that this reduction is lattice-
preserving. This will be exploited
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Combining them: The bootstrapping step is done by the LLL algorithm and the
samplerSampleD (sedSection T0.M Given a basi® of A, we obtain a new basis
T that||T|| < 2"1,(A) applying the LLL algorithm. Hence, if > ||T|| - w(+/logn),
we can use the sampl8ampleD to sample fronD, .

The whole reduction from sLWE to DGS is summarized as follows: Suppose
that the algorithnR needsn samples fron® to invoke W .

1. (bootstrapping Apply the LLL algorithm to an input basiB of a lattice A
and obtainl. Setr > ||T||- w(+/logn). ConstructS for D, by SampleD with
T andr.

2. (iterative step

(a) Construct the algorithriR for BDDgy on A* andd = aq/(V2r) by using
the oracleW and the algorithn® for Dy .

(b) Construct the quantum sampl®ft for Dy, VR/(V2d) by using the algorithm

R for BDDg on A* andd = aq/ V2r. Note thatyn/(V2d) = ynr/aq <
r/2 sinceaq > 2+/n.

Whenr < v2q- 5.(A), the algorithm will fail.
To connect DG and SIVR is somewhat simpler task than the aboves.
See Reg09 for the proof.

Lemma 2.4.23([Reg09 Lemma 3.17]) For anye = ¢(n) < 1/10 and any¢ >
V21, there is a lattice-preserving polynomial-time reduction fratVP, 5, to
DGS;.

Peikert's Reduction

The classical part of Regev’s reduction is from sLy¥E and the sample§ for
Da-, to BDDg overA, whered = aq/(V2r) < A1(A)/2.

Peikert pointed out the existence of the sam@l@mpleD for D, whenr is
slightly larger than the norm of a ba$s In addition, he recalled the result of Gold-
reich and GoldwasseGG0( that GapCVE is in coAM wheny = O( +/n/logn).

The nutshell of GGO( is the observation on two balls:

Lemma 2.4.24. For any constantg,d > 0, and anyu € R" of lengthd, and

d’ =d- +/n/(clogn),
A(U(B(0,d")), U(B(u,d"))) < 1 -1/ poly(n).

This lemma states that ¥ < B(0, d"), it will be contained inB(u, d’) with
probability at least Apoly(n). Hence, one cannot distinguishis chosen from
B(0,d") or B(u, d") conditioned on thax is in both balls. In addition, notice that, if
d’ > 21(A)/2, the two balls do not overlap.

We give the details of the Peikert reducti@ei09¢. The input is 8, d) where
min; |6l = 1, 21(A) < ¢, and 1> d > ¢ /y.
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1. Setr = q- V2n/(yd).

2. Implement the oraclé for D~ by the sampleBampleD with the dual basis
B*.

3. Repeat the following proceduid = poly(n) times.

(a) Choose a pointv « B(0,d’), whered’ = d - 4/n/(4logn), and letx =
w mod B.

(b) Invoke the reductiorR on (B, r, x) and obtainv.
4. If v# x —win any of theN iterations, then accept. Otherwise, reject.

Notice that ma?q|5i*|| =1/ min; ||5i|| < 1. Notice also that

r= —q;/j_n > q? > w(+/logn),

sinceq > (¢/ V2n) - w(+flogn).
If (B, d)is a NO instance, thery(A) > y - d. Lemma 2.1 .Bells us that

ne(A") < Vn/au(A) < Vn/(yd)

for e = 27". Thus, we have that/2q - n.(A*) < V2ng/(yd) < r. Additionally, we
have that

. , n ay QqQVv2n  ay aq
distx,A)<d =d <d- = . = ,
. A) \ 4logn Van Ty Adn Var

where we use the hypothesis> n/(a v/logn). From these two facts, the reduction
R correctly works. Sincdi(A) > yd > 2d’, the reduction must return the unique
solutionv = X — win any iterations.

Next, consider the case whe,(d) is a YES instanceig(A) < d). Notice that
in the case, we cannot ensure that the reducfi@orrectly works. However, we
can show the reductioR fails to finds the solutiov = x — w by the argument
on the statistical distance. Lete A be the shortest vector, that || = 11(A).
Consider an alternate game in whichvot— B(0, d’) is replaced by < B(z d').
We then replacex = w mod B with X’ = w mod B. In this alternate gameR is
invoked onx’. Then, we have that

1

|PriR(x) = x —w] — PriR(x") = x’ —w]| <1- Soly ()’

Hence,
1
+PrjR(x") = X' -w'] < 2—
poiy( ") =X 2 g
Notice thatB(z d’) = B(0,d’) (mod B) sincez € A. Thus,x’ is distributed identi-
cally to x and we can replacewith x” in the probabilities. Therefore,

B 1
2- poly(n)’

PrifR(x) = x—w] < 1-

—Pr[R(x") = x'-w].

PriR(x) = x-w] <1
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TakingN = poly(n) suficiently large, we have # X — win at least one iteration.
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Cyclic and Ideal Lattices

Several families of lattice-based hash functidkécO7, [PR0G [LM0O6] are known

to have small description sizes. Originally, Micciancidi¢07] gave a com-

pact version of the lattice-based hash functions and proved the one-wayness of
the version. After that, Peikert and Ros@RI0f and Lyubashevsky and Mic-
ciancio [LMO6] proposed the modified versions of the version of Micciancio and
showed their collision-resistance property, independently. The underlying prob-
lems are lattice problems whose instances are lattices has certain algebraic struc-
ture and compact descriptiooyclic or ideal lattices We employ the notions, the
notations, the definitions, and the results in Lyubashevsky and Miccidodiod],

since its generality of the descriptions.

Organization: [Section 3.llprepares basic notions, notation, and facts of poly-
nomials.[Section 3.Previews and defines several lattic&ection 3.Rists up the
problems for ideal latticefSection 3.#eviews the average-caa®rst-case reduc-
tions from ideal-lattice versions of SIS and LWE to ideal lattice problems.

3.1 Preliminaries

Letf(X) = fo+ fix+---+ foo1X™ 1 + X" € Z[X] be a monic polynomial of degree
Consider the quotient ring: = Z[X]/{f). We use the standard set of representatives
{(g modf) | g € Z[X]} for R.. Hence, we identify an integral polynomialof
degree at most — 1 with the corresponding representatigenfodf). In addition,

we identify a polynomia#i(x) = ag+aix+- - -+an,_1X""1 € Ry with ann-dimensional
integer vectora = (ay,...,an-1) € Z" in this thesis. More precisely, consider the
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following mappingo : Ry — 2™
olag+aX+---+an1X" o (ag, ag, . . ., an-1).

We call this embedding as the normal embeddingrointo Z". We omit thiso
unless we need it explicitly.

Let us define some useful functions and examine these properties. A function
rot; : R — Ry is defined by rg{a) = a® x (naturally extended to rpt Q[x]/{f) —
Q[X]/¢fy and rot : Q" — Q" by o). This function is linear because the map is
represented by the matrix

00 0 -f;
10 0 -f,
R={0 1 0
00 0 —-fho
0 0 1 _fn_l
By the identificatiornr-, we have
rot(a) = Ry - a.
A function Rot : R — Z™™ is defined by Rgta) =

[o(a), o(rots (a)), . .. ,a(rotp‘l(a))]. For example, if = x"-1orf = x"+1, Rot(a)

is a circulant or nega-circulant matrix, respectively. We next define a ring of
matrices corresponding to polynomialsRn Let M = {Rot(a) € Z™" | a € Re}.
Then, Rot : R — M is a ring isomorphism, since Rds homomorphic and one

to one. Additionally, notice that

a®b =Rot(a) - b.

In addition, we note that the above arguments are also applie ifeplaced with
Zq for any integeiq > 2.

We define a norm with respect foas follows: Forg € Z[X], |lg+ (P)lf =
lI(g modf)||.,. We write||g]l; instead of|g + (f)|};.

The property of is defined as that the ring norifg|l; is not much bigger than
llgll, for any polynomialg. Formally, they captured this property as thgpansion
factor of f:

EFR.(f.k) = llalls /119l -

max
geZ[X],deg@)<k(degf)-1)

For example, a simple calculation shows that¥E(1, k) < k and EF&"1+ x"2 +
.-+ 1,k) < 2k. We say a polynomidi is suitable iff is a monic and irreducible
in Z[X] and there is a constantsuch that EF( k) < ck for any natural numbek.
See|LMO06, Section 3.1] for more details. They employed a family of polynomials
such as"+1 andx™ 1+ x"2+...+1 for n such that the polynomials are irreducible
in Z[X].

Note that the relation df = x" + 1 andg, which will be exploited later.

28



3.2. CYCLIC AND IDEAL LATTICES

Lemma 3.1.1. Letf = x"+1andn = 2%, wherek > 2. If qis a prime with
2n|(q - 1), thenf = [Jigm(x — W?*1) overZg, wherew € Z; is a generator of a
subgroupw®, w!, . ..} ¢ Z;of cardinality 2%,

Lemma 3.1.2([BGM93). Letf = x" + 1 andn = 2X, wherek > 2. If qis a prime
with g = 3 (mod 8) f = f; - f; overZq, where eacH; is irreducible inZg[X] and
can be writterfj = xV2 + t;x"V4 — 1 with t; € Zj.

3.2 Cyclic and Ideal Lattices

We say a lattice\ of dimensionn is cyclic if for any vectorx in A, roty_1(x) is
also inA.

We say a latticeA of dimensionn is ideal if it is an ideall ¢ R; for some
monic and irreducible polynomidl € Z[X] of degreen, that is, there exist and
| € Rsuch thatr(l) = A. We also say a latticA of dimensionn is f-ideal if it
corresponds to an idehlc R; under the mapping-.

Precisely, the latticaA (1) corresponding is obtained as follows: Sindeis an
ideal, there exists a set of polynom@l . .., g of degree at most — 1 such that
| =(01,...,0). Then, consideG = [Rot(g1)l...|Rotk(g)]. The A(l) is written
by {v = Gee Z" | e € Z""}. By using the standard technique, we have a matrix
B € Z™"such thatA(I) = {v=Beec Z" | e Z"}.

In addition, we note that any idebIC R defines the correspondirigll-rank
lattice A(1) € Z™:

Lemma 3.2.1(Lemma 3.2I[LM0g]). Every ideall € R;, wheref € Z[x] is a monic
and irreducible polynomial of degrae is isomorphic to a full-rank lattice i@".

Proof. Letl =(g1,...,0), whereg; # 0 and they are of degree at most 1. Itis
obvious that the polynomialg;, 91X, ..., g1x"* are linearly independent ovér.
We show that the polynomiatg, g1 ®X, . .., g1® X" are also linearly independent
overZ. This shows the corresponding lattia€¢l) containsn linearly independent
vectorso(gi1), o(rot (g1)), . . ., a(rotp‘l(gl)) and completes the proof.

If the polynomials are linearly dependent, then there exists a non-zero polyno-
miala = (ag + a1x + - - - + a1 X" — 1) € Z[x] of degree at most — 1 such that
mea=Yla0me xX) = 0. Then,g; - a = f - h e (f) for some polynomial
h € Z[x]. Sincef is irreducible oveZ andZ[x] is a unique factorization domain,
fisa prime. Thusf | gorf | a. Both ofg; anda have degree at most- 1, this
cannot occur unlegg orais 0. This completes the proof. |

We note that Ding and LindnelDLO7] gave a polynomial-time algorithm
which identifies a given basis is a basis spans a lattice or an ideal lattice by em-
ploying the Hermite normal form.

Lemma 3.2.2(Lemma 1DLO7]). Let B € Z™" be a basis of a latticd. ThenA
corresponds to some idebE R; if and only if there exists a matrik € Z™" such
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that
R:B = BT.

We found the extended definitions of ideal lattices in Peikert and RE4RO]
and Buchmann and LindneBL09]. Let K = Q({) be a number field of degree
for some algebraic numbér(or you can consideK = Q[x]/(f), there is a monic
and irreducible polynomidi € Q[x] of degreen such thaf(¢) = 0). LetO be an
order ofK.

In [BLO9], Buchmann and Lindner said that a lattiteis O-ideal if A corre-
sponds to some ide&lc O. This definition equals to the one by Lyubashevsky and
Micciancio if O = Z(¢) ~ Z[X]/(f) andf € Z[X].

In [PROY, Peikert and Rosen said that a lattikds ideal if it corresponds to
an ideall € O through another embedding (the canonical embedding).

3.3 Problems

First of all, we extend the notation of successive minima. For any ide&R;,
defineA’(1) to beAP(A(1)). In the following, we assume théte Z[x] is a monic
polynomial of degrea.

Definition 3.3.1(f-SPpr). Given anideal C R, the problem is finding a non-zero
polynomialg € | such that|g|| <y - /lf(l).

Definition 3.3.2(f-SVP$). Given a basisB of a lattice A(l), wherel C R, the
problem is finding a non-zero vectee A(l) such thafjv|| < y - /lf(A(I)).

These two problems essentially equals and tlfedince is only notation.
Naturally, we can define the version of SIVP as follows:

Definition 3.3.3(f-SIVP$). Given a basisB of a latticeA(l), wherel C Ry, the
problem is finding a set of linearly independent vec®rs A(l) such that|S|, <

Y - An(AQD):
Lyubashevsky and Micciancio gave the following lemma that states the relation

of A7(A(1)) andA;’(A(1)). By this, we have the simple reductions fréf8IVP}’ to
f-SVP;" and fromf-SVPE’Z.y to f-SIVP;" if f is irreducible, wherd, = EF.(f, 2).

Lemma 3.3.4(Lemma 4.2[LM06]). Assume that is irreducible. For all ideals
| € Ry, we have
A (A() < EFR(f,2) - A7 (A(1)).

Proof. Let g € Z" be a shortest vector d(1), that is,||gll,, = A7°(A(l)). Then, let
us consideg,g® x, ...,g® x"1. By[Lemma 3.2.llthese polynomials are linearly
independent. The maximum degreegaf is 2n — 2. Hence|gX ||, < EF.(f.2)-
lo® x|, < EFx(f.2)- llgll, = EFw(f, 2)A5°(A(1)) forall0 <i <n-1. O

Corollary 3.3.5. Assume thdtis irreducible. There exist reductions frdrSIVP)’
tof-SVF’;o and fromf-SVP‘E’zy tof-SIVP;", whereE; = EF,(f, 2).
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Proof. We describe the reduction algorithms for these two reductions.
(Fromf-SIVP) to f-SVP)) The algorithm, given a basB of a lattice A(l), in-
vokes the solver of-SVP? and obtains a non-zero vectgr € A(l) such that
19l < v-AT(A(1)). Then, it outputsS = Rot(g) as the solution of the instan&
of f-SIVP]. The vectors oS are linearly independent and the normsa at most
Ez-y-A7(A(D)) <y - A7 (AQ1)).
(Fromf-SVPE | to f-SIVP]) The algorithm, given a basiB of a lattice A(l),
invokes the solver of-SIVPE, | and obtains a set of linearly independent vectors
=[S1,..., 5] € A(l) such that|F|,, < v - A7 (A(l)). Then, it outputs the one of
vectors inS as the solution of the instan&:of f- SVRg,, . The norm ofSis at most
v - A (A1) < Ezy - A7 (A(l)) and this completes the proof. |

In order to show the average-caserst-case reductions, we define the internal
problem as ifSection 2.4

Definition 3.3.6 (f-IncSPR). Given an ideal € R and a polynomiay) € | such
thatl|glly > yA7°(1), the problem is finding a polynomial € | such that|hll; # O
and|lhll < liglls /2.

Definition 3.3.7(f-|ncSVP;’). Given a basisB3 of a lattice A(l) and a vectorg €
A(1) such that|gll, > yA7(A(1)), wherel C Ry, the problem is finding a non-zero
vectorh € A(l) such thatlhll, < [Igll, /2.

Lemma 3.3.8(Lemma 4.4[LMOQ6]). There is a polynomial-time reduction from
f-SVP} to f-IncSVE;.

Note on the Hardness: There were no results on the NP-hardness of the above
problems. This is the one of main open problems in this area.

3.4 Average-Cas@Norst-Case Reductions

3.4.1 From Small Integer Solution Problems

We first extend the definition of the norfil,. Let us denote a vector of polynomi-
alsinRf orReg by a. Foré = (ey,...,en) € R;“ we write by||€]|, thelp norm of

e=o(e)o...oo(en) € Z™.
We give the definitions df-SIS andf-ISIS as analogies of SIS and ISIS.

Definition 3.4.1(f- SIS(‘Jj ﬁ) For a monic polynomidi € Z[x] of degreen, integers
m = m(n) andq = q(n), a real3 = B(n), given anm-dimensional row vectoa =
[a1,...,8m] € R}f‘q, the problem is finding a non-zero vectds (ey,...,en) € R"

such thai™é = Yiqma ® & = 0in R g and||&|, < 5.

Definition 3.4.2(f- ISISpm ). For a monic polynomia e Z[x] of degreen, inte-
gersm = m(n) andq = q(n) a realg = g(n), given anm-dimensional row vector
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a=|[a,...,am € Rfmq and a polynomial € R g, the problem is finding a vector
€=(er....em) e R"suchtha-&= ¥ a ®& =uin R qand||g|, <S.

The problemf-SIS is finding the short non-zero element in tRemodule
M*(&) = {€e R"| &-€=0 (modq)}. In addition,A5(a) = {e€ Z™ | Rot(d)-e =
0 (mod g)} is a lattice because this is additive and discrete subgrotfi'bfHence,
solvingf-SIS onais finding a short non-zero vector in the Iattiﬁg(é).

Micciancio [MicQ7] gave the first average-casmrst-case reductions on cyclic
lattices. Lyubashevsky and MiccianclbMI06] gave the average-casmrst-case
reduction from the ideal-lattice version of the small integer solution problem to
f-SVP?. We note that the reduction is to the search problem rather than the gap
problem.

Lyubashevsky and Micciancio showed the following theorer M(6]. Note
that m should be larger than lag log 28 to ensure the instance 6¢SIS;
has a solution. Note also that the reduction is similar to that of Micciancio and
Regev IMR07] and the underlying problem is nowSVP? since 47 (A(l)) <
EF.(f,2) - 27 (A(1)) byLemma 3.3.4

Theorem 3.4.3([LMO6]). Assume that is irreducible. LetEs = EF(f, 3). Let
m > logq/log 28 andq > 2EzBmr¥/2logn. Then fory = 8EZ8mnlog? n, there
exists an polynomial-time reduction from the worst case 8VP;’ to the average

case otf—Slsa‘jmﬁ.

Stehk, Steinfeld, Tanaka, and Xagawa gave a variant of the above theorem to

save+/m = O(+/n) factor in the reduction from S[H to Slsémﬂm.

Theorem 3.4.4([SSTX0Y). Suppose that € Z[x] is a monic and irreducible
polynomial of degreen. Let Ex = EF.(f,k). Letm = poly(n) be larger than
logg/log28 andq = gq(n) = ﬁ(Egﬁmzn). Then if there exists a polynomial-
time (resp. subexponential-time) algorithm solvii@IS;mp with probability

1/ poly(n) (resp.2-°(), then there exists a polynomial-time (resp. subexponential-
time) algorithm solving-SVP, with y = O(E28mnt/2) (resp.y = O(E2smn).

The proof is essentially the same as one by Lyubashevsky and Micciancio.
To apply the technique of Gentry et al., we need fRat be a principal ideal
domain. This idea is due to Peikert and Re¢eeiD9&

3.4.2 From Learning With Errors
We next define the parameterized version of the LWE problem.

Definition 3.4.5 (f-sSLWEnq,,, the average case)et y be a distribution ovef.
Givena € R, and2 Rot(d)"s+ x € T™, wherea « R, s« Zg andx « ™
the problem is finding € Zg.

You can consider the problem &s&nalogue of SLWE, with msamples.
For simplicity, we denoté\q(Rot(a)) by Aq(a) if f is apparent in the context.
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Stehk, Steinfeld, Tanaka, and Xagavi83TX09 showed the following theo-
rem.

Theorem 3.4.6 (Theorem 3 [ESTX0Y). If there exists an algorithm solving
SLWEgmy, intimeT and with probabilitye > 4mexp(-r/4a?), then there exists a
quantumalgorithm that solveSIS, ,, /2, IN timepoly(T, n) and with probability
€3/64— O(e°) — 27" The result still holds when replast WE with f-sLWE and
SISwith f-SISfor f = x" + 1withn = 2€ > 32, m > 41 logq, andq = 3 (mod 8)

The proof is due to Stetland Steinfeld$S09. The reduction consists of
two reductions, from sLWE to the variant of BDD and from the variant to SIS.
The former requires only classical reductions, however, the latter is a quantum
reduction.

The variant of BDD is defined as follows:

Definition 3.4.7 (Bounded Distance Decoding wifly [SSTX09 Definition 3]).
For a distributiony, the problem BDDY) is defined as follows: Given a bad#sof
ann-dimensional latticeA and a vectot = b + e whereb € A ande « y. The
goal is to findb.

We say that a randomized algorith# solves BDDf) for a lattice A with
success probability if, for everyb € A,

Pr [AB,t=b+e)=D] > e
e—y, A

In addition, a randomized algorithi solving BDD(y) for a latticeA is said to be
strongly solution-independeiit for every fixed error vectoe, the probability

PLA(B. 1= b+e) = b]

is independent of.
The first part of the reduction is formally stated as follows:

Lemma 3.4.8 ([SSTX09 Lemma 7]) Let n, g, and m be integers andr €
(0, 1) with m and logq are polynomially bounded by. Suppose that there ex-
ists an algorithmA that solvessLWEmqy,,, in time T, and with probability
€ > d4mexp(nr/4a?). Then there exist§ C Zg™ of cardinality eq"™/2 and an
strongly solution-independent algorith# such that ifA € S, the algorithm8B
solvesBDD(vq,) for Aq(A) intime T + poly(n) and with probability at least/4.

The above algorithn®B is used to construct BDIXy ).

Lemma 3.4.9 ([SSTX09 Lemma 8]) Let s > 0 and B be a basis of am-
dimensional lattice\. Suppose that there exists a strongly solution-independent al-
gorithmA that solveBDD(vs) for A in timeT and with probabilitye. Then, there
exists an integeR such thatR| = poly(T,n,|log s, |B|) and a strongly solution-
independent algorithn8 that solvesBDD(Da,rs) within a polynomial time in

log R and with probability at least — 2-%,
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Regev’s quantum reduction is the worst-gaggst-case reduction; That is, if
there exists an algorithiAl that solves BDD in the worst case, then there exists a
sampler foiD,- s. Stehé and Steinfeld observed that the reduction still works even
if the algorithmA only solves the average case.

Lemma 3.4.10([SSTX09 Lemma 9]) Suppose we are given a badsof an
n-dimensional latticeA, an integerR > 22"1,(A), and a reals < A1(A)/ V8n.
Suppose that there exists a strongly solution-independent algorithihat solves
BDD(Da,rs) for A with time T and success probability. Then there exists a
quantum algorithmB which outputs a vectdb € A* whose distribution is within
distancel — €2/2 + O(e*) + 27 of Dy 1/2s. Its run-time ispoly(T, logR).

We omit the proof and the details, since it deeply relates to quantum computa-
tions. Anyway, combining these lemmas, we oblBieorem 3.416
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Hash Functions

In this chapter, we give descriptions of one-way and collision-resistant hash func-
tions based on lattice and ideal lattice problems.

Organization: [Secfion 4.ldefines model and security notions on hash schemes.
[Section 4.Pgives a review on properties of hash functioection 4.Breviews

the construction of lattice-based hash functions. We also give the review of ideal-
lattice-based hash functions@eciion 4.4

4.1 Definitions

We first give the functional model of a family of hash functions. 6t = {hy :

Dn — Ry | k € Ky} be afamily of hash functionwith the security parameter, a
message spade,, a digest spacB,, and a key spack,. DefineH = {Hp}n. We
call H ahash familyinstead of a family of families of hash functions. (Recall the
SHAZ2 family including SHA-224, SHA-256, SHA-384, and SHA-512.)

4.1.1 Model of Hash Schemes
A (cryptographic) hash schenitash is a pair of algorithmsSetup, Eval).
Setup(1"): A setup algorithm, given the security paramet&rdutputs a kexk.

Eval(k, msQ: An evaluation algorithm, givekand a messagesge D, returns
a digestd € R;,.

We definehy(msg = Eval(k, msg. By this definition, we can identify a hash
schemeHash with a hash familyH.
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LEFTOVER HASH LEMMA

4.1.2 Security Notions

Roughly speaking, we say thidash is one-way if any polynomial-time adversary
cannot, giverk and a random imags, output a preimage of under the hash
function indexed byk. We say thatHash is collision resistant if any polynomial-
time adversary cannot, givdan output a collisionifisg msd) of the hash function
indexed byk. Formally, we define the following experimeriEpp 4(n) and
Epoash,ﬂ(n) between the challengér and the adversargi for the one-way and
the collision-resistant properties of a hash scheme.

Experiment Epoashﬂ(n):

Setup Phase:The challenge€ runsSetup with 1" and obtaink. Next,C
generates a random elememsg«— D,, and computes « Eval(k, msg.
C feedsk andmsgto the adversaryA.

Challenge Phase:A outputsmsd. If msdg € D,, andEval(k, msg) =
then the challenger returns 1, otherwise, 0.

Experiment EXpiy,¢, 4 (N):

Setup Phase:The challenge€ runsSetup with 1" and obtaink. C feeds
k to the adversaryA.

Challenge Phase:A outputsmsgand msd. If msgmsd € Dy, msg #
msd, andEval(k, msg = Eval(k, msd) then the challenger returns 1, oth-
erwise, 0.

Definition 4.1.1. Let Hash = (Setup, Eval) be a hash scheme. L&t be an ad-

versary. Let the advantage ¢t against one-way property bedvp) ﬂ(n) :

Pr{Explty, 4(M) = 1]. We say thatHash is one-way if, for any probabilistic
polynomial-time adversarg, Advyy ., _a(n) is negligible inn.

Let the advantage ofA against collision-resistance property be
AV 2 = Pr{Expig, 4(N) = 1] We say thatHash is collision resis-
tant if, for any probabilistic polynomial-time adversarA, Adeashﬂ(n) is
negligible inn.

There are several security notions on (cryptographic) hash schemes: one-
wayness (first-preimage resistance), second-preimage resistance, etc. On the defi-
nitions of them and the relations between them, [R&0H.

4.2 Probabilistic Notions on Hash Functions and the Left-
over Hash Lemma

In addition to the above security notions, we often discuss other notions on hash
families in this thesis and the leftover hash lemma.

First of all, we recall the probabilistic notions on a family of hash functions (see
Shoup’s textbookK$ho08 Section 8.7]). Again, letH, = {hy : Dn —» R, | k € Ky}
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be a family of hash functions with the security parameter message spay, a
digest spac®,, and a key spack,.

o We sayH, is e-almost universaif for all x # X' € Dy,

kf}zn[hk(x) =h(X)] < e

e We also say thatt}, is universalif it is 1/ |R,|-almost universal.

o We sayH, is e-almost strongly universal hy(X) is uniformly distributed over
Ry, that is Prek,[hk(X) = y] = 1/|Ry| for any x € D, andy € R,, and for all
distinctx, X' € Dy and for ally,y’ € R,

€
PrIG) =y Ah(X) =y] = =

IRal”

e We also say that, is pairwise independenitf it is 1/ |Ry|-almost strongly
universal.

We naturally extend these notions of a family of hash functions to a hash family
H = {Wn}n-

The Leftover Hash Lemma: The leftover hash lemma appears anywhere of ar-
eas in the computer science and cryptography.
We follow the presentation by ShouBho0§. Let |Dy| = N and|R,| = M.
Let K be a random variable uniformly distributed o€y and letX be a ran-
dom variable distributed oved,. The collision probability ofX is defined as
B = Yxep, PIIX = X]2. The quantity log (1y) is the min entropy oK (seeSect
fion L.2.
The following versions are somewhat generalized versions of the leftover hash
lemma.

Lemma4.2.1(Thm.8.37,[5ho08). LetH, be a(1+a)/M-almost universal family
of hash functions frord, to R,. Then,

A((K, hk (X)), (K,U)) < % JMB +a.

Lemma4.2.2(Thm.8.38,[Eho0§). LetH, be a(1+a)/M-almost universal family
of hash functions fror®, to R,. Then,

A((K, (X, . .., h (X)), (K, U1, ..., U)) < %I VMB + a.

Lemma 4.2.3(Leftover Hash Lemma (a min-entropy versianhet H, = {hg :
Dn — Ry | k € Ky} be a family of hash functions, wheis, and R, are finite
sets. LetK be the uniform distribution oveK,. and letX be a random variable
distributed according t®. Then,

A((K, hg (X)), (K, U)) < 27 2(Hs(X)-logIRl+2)
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whereU is a random variable distributed uniformly ovBy. In particular, if X is
distributed uniformly oveD,, we have

1 /IRnI
A((K, k(X)) (K, V) < 5 Du’

4.3 Lattice-based hash functions

We review the lattice-based hash functions. For two integetsq(n) andm =
m(n), we define a family of hash functions,

whereha(x) = Ax modgandD,, ¢ Z™.
The definition of the hash scheme is as follows:

Scheme 4.3.XLHash). This scheme is parametrized by integers= m(n) and
q = q(n), and a spac®, ¢ Z™. The key space i&;*™. The message spacels
and the digest spacefy = Zg.

Setup(1"): Given 1!, outputA « Zg*™
Eval(A, e): Given A ande € Dy, outputAe modq.

We can identify#(qg, m) = {#x(qg, m)} with LHash = (Setup, Eval).

It is easily verified that the collision resistance and the one-wayness is directly
connected to the average-case hardness ’ and ISI%M, respectively,
whereg is the upperbound of th, norm of x € Dy. If we setD, = {0,1}™,
the underlying problem is S}, \m. Hence, as we review iBecfion 2.4Pthe
hash scheme is collision resistance if GapSWPSIVP, is hard in the worst case.
Below we give the brief history and the precise security onltkiash.

Originally, Ajtai [Ajt96] showed that the worst-case hardness of GapJuP
some polynomiaj(n) is reduced to the average-case hardness of.gi$or suit-
ableq(n) andm(n). Itis known that* (g, m) is indeed collision resistant for suitably
choseng andm by Goldreich, Goldwasser, and Hale@GH9€. They observed
that finding a collision X, X’) for ha € (g, m) implies finding a short non-zero
vectorz = x — x’ such that|z| < vYmandAz= 0 (modq), i.e., solving SI@m v
Cai and NerurkarlCN97] and Micciancio [Mic04] improved an approximation
factor of the underlying lattice problems, wheye= O(n*) and O(n®), respec-
tively. Micciancio and Regev showed that(g, m) is collision resistant under the
assumption that GapS¥p, is hard in the worst cas®IR07], which is a drastic
improvement. There were another reductions from the gap version of the covering
radius problem GapCRPthe shortest independent vector problem Si\éhd the
guaranteed distance decoding problem GDRadjusting the parametefglR07].
Following it, Peikert/Pei0§ showed the reductions from the same problems in any
Ip norms forp > 2. A recent papefGPV0§ Section 9] by Gentry, Peikert, and
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Vaikuntanathan showed that the moduiia SIS can b&(n) as we already noted
in[Section 2.4

Theorem 4.3.2(Implicit in [[GPVQ{). Letm = m(n), g = q(n), 8 = B(n), v =
y(n) be polynomially-bounded functions. For agfn) = w(logn), there exists
a negligible functione = ¢e(n) such that, for anyg > y - w(4/logn) andy =
B+/n-w(4/logn), there is a probabilistic polynomial-time reduction fr@iVP, in
the worst case t&IS;mp or ISIS;mp on average.

4.3.1 Regularity

In the literature, Ajtai firstly showed the regularity of the hash function. Regev
improved the analysis of the regularity.

Lemma 4.3.3(Claim 5.3, adaptedReg09). Let G be some finite Abelian group
of cardinality Q and letm be some integer. For anyp elements, ..., gm, consider
A(Xierm bigi, u), wherebj < {0,1} andu « G. Then, the expectation of this
statistical distance over a uniform choice @, ..., gm is at most(Q/2™/2. In
particular, the probability that this statistical distance is more t{&y2™Y4 is at
most(Q/2™/4,

A strategy to obtain the bound on the statistical distance is showing the family
of hash functionshg = {hg : {0,1}™ — G | g € G™}, wherehg(b) = Yicin bigi,
is universal and applying the leftover hash lemma.Red09, Regev essentially
showed that the hash is universal. In addition, he also gave the bound of expecta-
tion. We review his proof closer.

Proof. For g = (91,....9m) € G™, let us define Py(h)
> |(b€{0,1}™| ¥ bigi = h}|. Notice that for anyb # b, Prg_gn[3; bigi =
2i bigi] = Prgegm[2i(bi — b)gi] = 1/Q, sinceG is Abelian. This already showed
that the family of hash function®f,,s is universal. In particular, we obtain that,
by applying the leftover hash lemma,

1 /Q
A((g, Zibig). (9. W) < 54/ 5m
2 V2
since the collision probability df is 1/2™.
Next, we bound the collision probability for fixegle G™, that is, the square

of thel, norm of the functiorPg overR®. We can upper bound this by as follows:

D Po)?= Pr [Z bigi = Z b{gi}

heG

1 / /
< >m + b,b'<E{5,1}m [Z big = Z bigilb#b

39
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Hence, takingy as a random variable, we obtain that

1
Exp Ez—mi

heG

Qlr

By using the norm bouniiik||., < VQ||x||, for anyx € RQ, we have that

n1/2]
L -3 eple(zrm-3]]

h

s3]

h
)"
Q

Exp
g

< Exp
9

= QY2 Exp
g

< Q1/2 [Eg(p Z Pg(h)2
L h

< Ql/Z . 2—m/2'

Hence,
quA(Zi bigi, u)] < 2QY22-M2,
By using the average argument, we have that
PrlA(S: bigi u) > QY42 ™| < QY424
mi

Notice that this argument can be applied to @y ZG*'. In particular, for

A« Z§"™ e  (0,1)™, andu « Z]*, we have that
A((A, Ae), (A, 1)) < 2—%(m+1—(n+|)|ogq)_

Hence, takingn > ((1 + §)n + I)logq for some constand > 0, we obtain the
(statistical) regularity of the lattice-based hash family.

4.4 |deal-Lattice-Based Hash Functions

Foray,...,am € R g, letarepresent am-dimensional row vectord, . . ., am).
Let us define a family of hash functions.

Ho(f.0.m) = {ha: Do — Riq = Zj | 2 € Ry},

wherehy(é) = a-éandé = (ey, ..., en) € Dn. We define a hash familg(f, g, m) =
{Hn(f, g, m},. We note that this hash function is a special version of the lattice-
based hash functions. To confirm this, verify the following relations: d.et

e o...oenforey e Z". Then, we identifye with & = (ey,...,em) € R™. So, we
have thata - € = Rot(d)e.
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4.4. |IDEAL-LATTICE-BASED HASH FUNCTIONS

Scheme 4.4.1ILHash). The hash scheneHash = (Setup, Eval) is parametrized
by monic polynomial$ € Z[x] of degreen, integersm = m(n) andq = q(n), and

a spaceD, ¢ R" = Z™. The key space inTq. The message spaceDls and the
digest space iB, = Rr g = Zy.

Setup(1"): Given 1", outputa « R;“q.
Eval(a, &): Givenaandé e Dy, outputa - € moda.

The first compact hash function is by MicciancMi€07] and with parameters
f = X" -1 andD, = ([D]")™ for a small integeD. He proved that this hash
functions are one-way if{' — 1)-SVP; is hard in the worst-case for certagirand
parameter settings. He left the open problem deciding whether this functions are
collision resistant or not.

This problem is solved negatively by Peikert and Ro$R0€f and Lyuba-
shevsky and MicciancidMO06] with demonstration of the attacks finding the col-
lision. The polynomiak™ — 1 has the small factor — 1 overZ and, thus, oveg,.
Hencea; is divisible byx — 1 with probability 1/q over the choice o&;. Suppose
that happens. Then, we sgt= (X" - 1)/(x-= 1) = X"t + x"? + ...+ x+ 1 e D"
andz; = 0 fori = 2,...,m. Obviously, we have that; ® z; = 0 even oveZ. The
pair € &) = ((z1,0,...,0),(0,0,...,0)) is collision ifa; is divisible byx — 1.

The point is that the rin@[x]/(x" — 1) is not an integral domaff.To fix the
weak point, Peikert and RoselAR0€, and Lyubashevsky and MicciancibNM06]|
proposed the technique, use of an integral domain. Peikert and Rosen gives an
algebraic constraint tB,, to avoid the weak point. Lyubashevsky and Micciancio
set the polynomial to be irreducible oveE, in order to ensur® = Z[x]/{f) an
integral domain, (henc@[x]/(f) is a field). Their techniques are essentially same.
We adopt the latter for generalization.

Applying[Theorem 3.4]dy Lyubashevsky and MiccianciM06], we obtain
the following security theorem.

Theorem 4.4.2([LM06]). Letf € Z[X] be a monic and irreducible polynomial of
degreen and letEs = EF,(f, 3). Letg be the upperbound of thg norm of vectors
in Dp. Letm > logq/ log 28 andq > 2Ez8mn®2logn. Then fory = 8E2mnlog? n,

if f-SVP;’ is hard in the worst case thehHash is collision resistant.

4.4.1 Computational Tricks

Hereafter, we describe whiHash is attractive on computational issues (see also
the original papersMic07, PR0OGILMO6, LMPROS).

Notice that we can seh = O(logn) andq = poly(n) in the abovelLHash.
Hence,ILHash enjoys the compactness of the paraméIeng‘q rather thanA €
Zg“™. The computation oflLHash.Eval is also reduced t®(n) by a careful choice
of the parameters.

1 We say that a rinRis an integral domain ifib # 0 for any non-zero elemengsb € R.
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Given a parametest = (a1, ...,am) and a messagé = (ey,..., én), the hash
value is Y & ® 6. Sincem can be set a®(logn) = O(1), it is sufice to
show that the multiplication iRk q = Zg[X]/(f) costs onlyO(n) if we takef andq
carefully.

The Fourier transformation:  First, assume thdtsplitsZq completely, that is,
f(X) = [Tiegn) (X — Wi) overZg. In this case we can use, to compate ein R g, the
discrete Fourier transformation (or the number theoretic transformation) which is
an isomorphism fronf o to Zg. By using the Chinese reminder theorem, we have
that

Rig = Za[X/(F = | | ZaDXd/¢x—wh),

iefn]

where the isomorphism is given by#(a) = (amodx —ws,...,amodX— w,).
Notice thata(wi) = a mod x — wy. Henceforth [ Ticrq Zq[X] /(X — Wi) = Zg, where
addition and multiplication is defined by the pairwise ones. We renaimeDFT
in the following and writed = DFT(a) for any polynomiala € R: 4. Define the
matrix WpeT by {Wi’_l}i,je[n]. Notice that

ﬁ Wi ﬁ a;) (a(wi)
W a a(w;
DFT() =Wper-a=| > .~ 21 (%] 2

wdowt oWl \an)  \a(wy)

To computea ® e in R g, we compute as follows: (1) compuée= DFT(a) =
(a(wa), ..., a(w,)) andé = DFT(e)(e(w), ..., eWy)), (2) computea®@e = 4- & =
(a(wy) - e(wy), ..., a(wy) - ewy)), and (3) we obtaim® e by applying DFT.

To fasten the convolutiona ® e, we possibly takd = x* — 1 and a prime
g such that ® | g — 1. By this choice, there is an elemente Zg such that the
cardinality of the subgroup generated \nyis 2. Then,f(x) = [Tiemm (X = w1
andWper = {wli-D0-Dy ;. This enables us to use of the fast Fourier transform
(FFT).

The another choice = x> + 1 and a primeg such that # | g — 1. In this
choice, we have an elemente Zg such that the cardinality of the subgroup gen-
erated byw is 1. Then,f(X) = [Tign (X — W2*1) andWper = (WD .
Despite of some dierences, again, this matiper allows us to use of the tech-
nigues in the FFT. See the below.

The Fast Fourier Transform (FFT) over Zq[x]/<x2k + 1): Itis well-known that
DFT(f) can be computed b@(nlogn) additions and multiplications. Let us define
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Whw = (Wi-D0-Dy 5. From the definition 0¥y, in this case we have hat

wo owl w2 w1 ao
wWwoowr ws . WA ||y

DFT(@) =Wqhw-a=| . . . . . 1.

W Wl WD WD) g,

Let us consider the simple case that 4. In the case, the order wfis 8 and

we have that
W wl w2 wd) (ag
NP L
8= wso w2 W | e
wo w we wh) \ag

Swapping the right hand side by the permutationa (0, 2, 1, 3) over{0, 1, 2, 3},

wo w2 wh owAy (ag) (WAl w2l wlowZ0 wl.w?ly (g

W w0 W wB owt| fap| w0 w?d wE w20 wE w23 ap
48100 w2 ows w | ag| T w20 w2l whw20 wh.w2l| |al

W ws w wh) lag) (w0 w2 wl w20 wlow?3) \ag

Since the order ofvis 8, therw* = -1 in Zq. Hence, we have that

Wop2 + 3e + (W, W3) © (W, - ao))

Wyaw-a=
w (W2,w2 -8 — (W, W3) © (Way2 - )

whereae = (ag, @), a = (a1, as), ande denotes the pairwise multiplication %ﬁ
This holds also anp = 2% andw a generator of a2* subgroup ofz;;,. Gener-
ally we have that

Whw-a= (Wn/z’wz et (W, VV3, B Wzn_l) © (Wn/Z,W2 ) ao)) .

Wn/z’wz - de — (W, W3, RN Wzn_l) ® (Wn/Z,WZ . ao)

Computing recursively, we can obtain DEJ & W, - a with O(nlog n) additions
and multiplications irzq if we precomputew, w?, w?,...,w?"). See [MPROq
for the implementation issues.

Choices of a polynomial f: We can use the FFT evenfifis not splitZq com-
pletely. The idea is embeddirg q into anotherRy . Letf’ = x7 — 1 with
n =2 > 2(n-1) andy’ be a prime such that > n¢? andr’ | ¢ - 1. ThenRe ¢
admits the fast Fourier transformation. Fob € R g, considera - b in Z[X]. By
the hypothesis off andq’, a- b equals taa® b in Ry . Hence, we first compute
a®bin Ry ¢ and reduce it modulbanda.

If f is x2 + 1 but not splitZq completely, we have no need to choose another
f’. We embedr; 4 into Ry ¢ which admits the fast Fourier transformation (to do so,
q > ndf is a prime such thatq g’ — 1 or 2*1 | f - 1).
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4.4.2 Micciancio’s Regularity Lemma

In this section, we examine the regularity of the hash farrily, g, m).

Micciancio proved the regularity of the hash family(x" — 1,9, m) with a
message spada, = [D]™". The proof can be applied to the hash fansiyf, g, m)
with closer look of the proof inMicO7].

Lemma 4.4.3 (Lemma 6 in [ESTX09Y, adapted version of Theorem 4.2
in [MicO7]). LetF be a finite field and € F[x] be monic and of degre® LetR be
the ringF[x]/(f). LetD C F. For a row vector of polynomiala = [ay,...,an] €
R™, we denote by,(€) the random variabled - € = Y a ® & € R, where
€= (en....en) « D™ If ais chosen fronR™ uniformly at random, then the
statistical distance to uniformity @&, Hx(€)) is at most

AIEEINE

wheref = [Tigq fi is the factorization of overF.

To show this, we need the following lemma.

Lemma 4.4.4 (Lemma 4.4 in [Mic07]). Let R be a finite ring, andz =
(z1,...,zm) € R™a vector of arbitrary ring elements. H = [ai,...,ayn] <« R™,
thena: z= Yiqm & - z € Ris uniformly distributed over the idedt,, . . ., zy). In
particular, for anyz,

1
=0/ ————.
2,33 ] (1, -z

To contain itself, we give the proof.

Proof. We start the proof following Micciancio’s prodMic07]. For simplicity, we
let g be the cardinality oF. In order to show the theorem, we bound the collision
probability of @ Hz(€)).

Pr [a=3a AHa(€) =Hx(€)] =Prla=&]- Pr [Ha(€)=Hx(€¢)|a=2]
a,a.e¢€ aa a.6¢€
1
g sk ié]aéb(a ~%) :O"

Fix € and€&. Then, by the above lemmidmma 4.4, the probability that
Sigm @ ® (6 — €) = 0 equals to 1je; — €,...,em—€)|. Let I be the set
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of all ideals ofR = F[x]/(f). Hence, conditioning on the ideals, we have that

PETICEOE ]=qin-zjll—l|-§ér[<e1—€l ,,,,, & — € = 1]

ie[m]

qmn é,é,

B 1
qr-qr lel

“ 1_[ Pr[a g el].

|e[m]

SinceF is a field, F[x] is a principal ideal domain. Then, any iddale I of

R =F[X]/{f) ~ F[X]/{f1) x - - - x F[X] /{f;) are of the form(p) wherep is a factor of

f. For any subses C [t], let ps = []ies fi. The ideals oRareZ = {{ps) | S C [t]}.
(Micciancio restricted the argument in the case whietex" — 1, but this argument
can be applied to any monic polynomfahs in the above.) In addition, note that
the ideakps) = [Ticg\s FIX/(fi). Hence, we havips)| = g"~989s). Therefore,
we have that

Prie —¢ < (ps)] = Pria =€ (modps)]

< mé';\xlgr[e-. =e (modps)] (4.1)
1
< W, (42)
wheree ranges oveF?€9bs-1),
Using this bound, we obtain
q" q° 1 m [ q degps)
ooyl | | Prle = < 091 < s (|@|deg‘°s>) ~\iom

By summing up, we have that

q degbs)_ q degfi)
Z|<|o 5 || Prle e < b)) < Z(m) _J;I](H(W) ]

(psyel |e[m] Sclt]

Combining them, we obtain that

v V . ] 1 q degf;)
P [(& Ha(®) = (&, Hx (&))] < g ﬂ(“ (W) ]

ie[t]

Applying the bound lemma, we conclude that

. o % 1 q deg(i)
A((8. Ha(®). (3. 1) < 5 J [ (1 . (W) ] -

i€ft]

whered « R™"andu « R. O
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We let apply the regularity lemma to several cases. Let

A(g,f,d) = J ]_[ (1 + (d_Cr!n)deg(i)) 1

ielt]

1. If f is irreducible oveF, we have than(q, f, d) = +/(q/d™)n = 23(oga-mnlogd)
By setting,m > (1 + §)logqg/logd for 6 > 0O, we obtain the upper bound
2-36nloga = 22 |t indicates if we sem = O(1) andq = poly(n) satisfying
the above then we havgq, f, d) is negligible even il = 2 or 3.

2.1f f = f1 - fy, where dedf) = n/2, we have thatA(g,f,d) =
V@ + (q/dMV2)2 -1 = /2(q/d™M™2 + (g/dM". By setting,m > (1 +
6)logg/logd for § > 0, we obtain the upper bound

V3. (q/d™)V4 < 2-aonlogars log3 _ o-0(n)

3. If f is completely split oveff, we have that(g,f,d) = +/(1+qg/d™" - 1.
Suppose that = (1+6) logq/ logd for somes > 0 to setg/d™ < 1 suficiently
small. Suppose that = n? for somea > 0. Then, we have the upper bound
2ng/dm = 25(+(arDlogn-miogd) ' gjnce (1+ g/d™" < 1 + 2ng/d™. To set
the upper bound negligible in, we need to havenlogd = w(logn), e.g.,
m = w(logn) andd = O(1) orm = O(1) andd = w(logn), which sacrifices
the dficiency ofILHash.

In particular, we have the following lemma for= x" + 1 andgq = 3 (mod 8)
by[Lemma 3.1.Pand the discussion (2).

Lemma 4.4.5([SSTX0Y). Letf = X"+ 1 andn = 2% wherek > 2. Letm >
(1 + ¢6)logg/ logd for some constani > 0. If qis a prime withqg = 3 (mod 8)
the statistical distancéA(q, X" + 1,d) of (& hy(&) from the uniform is at most
2—%6nlogq_

The analysis of the last case (3) is improved if we improve the inequidliy, (
which is not tight and overkills to obtain a good bound. Some experiments by the
author indicates there is more tight bound for the case whgpétsF completely.
However, we fail to prove the good bound. In addition, the above regularity lemma
states only the cage or Z for a primeq. Another possible extension is @k,
whereq is a composite. We leave obtaining these bound results as an open prob-
lem.
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Commitment

In this chapter, we construct simple string commitment schemes based on lattice
problems: They are statistically hiding and computationally binding (see the def-

inition below). We only consider string commitment schemes in the trusted setup

model.

Organization:  [Secfion 5.lldefines model and the security notions on non-
interactive commitment schemes. [Bection 5.2 we review the Halevi—Micali
commitment scheme as the general construction from a collision-resistant hash
schemelSection 5.RandSection 5.#eviews the lattice-based commitment scheme
which is proposed by Kawachi et éKTX08].

In addition, Fujisaki[Eii08] pointed out that our commitment scheme can be
converted into a chameleon hash scheme or a trapdoor commitment scheme, by
adjusting the parameters and replacing some functions. This construction also
appears in PeikerPei09l Section 2.2]. We will argue this as trapdoor hash in

5.1 Definitions

We consider a non-interactive string commitment scheme in the trusted setup
model. The trusted setup model is often required to construct practi¢hdieat
cryptographic schemes such as non-interactive string commitment schemes. In this
model, we assume that a trusted paftynonestly sets up a system parameter for
the sender and the receiver.

Let us specify how it works. First generates public parameters and distribute
them to users. Both parties, the sender and the receiver, then share public param-
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eters. The scheme runs in two phase, called committing and revealing phases. In
the committing phase, the sender commitghes message, say a strisgHe/she
generates a commitment stringntand an open valuev, and sendsmtto the re-
ceiver. In the revealing phase, the sender gives the receiver the dexaoithe

open stringov. The receiver verifies the validity @mtwith msgandov.

We require two security notions of the string commitment schemes,
statistically-hiding and computationally-binding properties. Intuitively, we say that
the commitment scheme is statistically hiding, if any computationally unbounded
adversarial receiver cannot distinguish two commitment strings generated from two
distinct strings. Also, it is computationally binding, if any polynomial-time adver-
sarial sender cannot change the committed string after sending the commitment.

5.1.1 Model of Non-Interactive Commitment Schemes

Let NIC = (Setup, Com, Ver) over a message spabt, be a non-interactive com-
mitment scheme. Notation of the algorithms are below:

Setup(1"): A setup algorithm, given the security paramet®r dutputs public
parameterparam

Com(param msg: A commitment algorithm, giveparamand a valuemsge
My, outputs a commitmermmtand a valuev.

Ver(param cmt msgov): A verification algorithm, givemparam cmt, msg and
ov, returns O (reject) or 1 (accept).

Often, we sayNIC is a bit commitment scheme W, = {0,1}. We sayNIC is a
string commitment scheme M, = {0, 1}/ for I(n) # w(1).

The correctness of the commitment is defined as follows: Fomasye My,
paramgenerated byetup(1") and ¢mt ov) generated by a valid committee , the
verifier always acceptgaram cmt msgov. Formally, it holds that for anynsge
M,

param« Setup(1");
Prib’ =1: (cmtov) « Com(parammsg; | =1,
b « Ver(param cmt msgov);

where the probability is taken over coins®dtup andCom.

5.1.2 Security Notions

To define the security notion, consider the experimeBtpys,(n) and
hide

Exlecﬂ(n) between the challengérand the adversars.

Experiment ExpRied,(n):
Setup Phase:The challengelC runs Setup(1") and obtaingparam The

adversaryA is given the security parametet dnd the parametemaram
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Challenge Phase:The adversary outputsmt (msgov), and msd, ov).
If msgmsg € M,, msg # msd, Ver(paramcmt msgov) = 1, and
Ver(paramcmt msd,ov) = 1 thenC returns 1. Otherwise, it returns
0.
Experiment Expfie® ,(n):
Setup Phase:The challengelC runs Setup(1") and obtaingparam The
adversaryA is given the security parametéet dnd the parameteparam

Challenge Phase:The adversary outputssg andmsg. If msg, msg €
M, andmsg, # msg, the challenger flips a fair coim« {0, 1}, generates
cmt « Com(param msg,), and sendsmt' to the adversary. Otherwise,
C returns 0 and halts.

Decision Phase:Finally, the adversary outputs its decisign If b = b’ the
challenger returns 1, otherwise 0.

Here, the security notions of the non-interactive commitment schemes we re-
guire can be formalized as follows:

Definition 5.1.1 (Hiding property) Consider a non-interactive commitment
schemeNIC = (Setup, Com, Ver).

We say NIC is perfectly hiding if any two messagassgmsd € My,
(param cminsg and param cminsg) are equally distributed, whergaram «
Setup(1¥), (CMiysg OVimsg < Com(parammsg, and €Minsg, OVinsg)
Com(param msd).

We sayNIC is statistically hiding if any two messagesgmsg € My, the
statistical distance betweeparam cminsg and param cmiysg) is negligible in
n.

Let A be an adversary. We define the advantag@l afs

. : 1
Adviiee () = ‘Pr[Epr‘Féﬂ(n) =1|- E“

We sayNIC is computationally hiding if for any polynomial-time adversafy

AdV{ie . (n) is negligible inn.

Definition 5.1.2 (Binding property) Let NIC = (Setup, Com, Ver) be a non-
interactive commitment scheme. Létbe an adversary. We define the advantage
of A as

Advi () := Pr[ExpRid 4(n) = 1].

We say a non-interactive commitment schawi€ is computationally binding

if AdvRe,(n) is negligible inn for any polynomial-time adversari.

5.1.3 Special Property

In addition, we define a special property of non-interactive commitment. We say
a non-interactive commitmenIC is special if the scheme can be modeled as fol-

49



5.2. EXAMPLE: THE HALEVI-MICALI COMMITMENT SCHEME

lows:

Setup(1"): A setup algorithm, given the security paramet®r dutputs public
parameterparam The parameteparam defined the functiorConparam :
Mn X Dn e Rn

Com(parammsg: A commitment algorithm, giveparamand a valuensg
My, first generate a randomness D, and outputs a commitmegint =
Comparam(msgr) and a valuev = (msgr).

Ver(param cmt msgov): A verification algorithm, givemparam cmt msg and
ov, returns 1 ifcmt= Conparan{msgov) and 0 otherwise.

5.2 Example: The Halevi-Micali Commitment Scheme

General constructions of statistically-hiding and computationally-binding string
commitment schemes are known from a family of collision-resistant hash func-
tions DPP97|HM96]. Their constructions used universal hash functions for the

statistically-hiding property and very similar to each others. For simplicity, we

decide to review the Halevi-Micali construction.

The Halevi—Micali commitment scheme: Halevi and Micali proposed a sim-
ple string commitment scheme based on the collision-resistance hash func-
tion [HM96], which is very similar to one inDPP9§.

Let ndenote the security parameter and le¢ a positive integer at least 6 4.
Let Hn = {hg : {0, 1}* — {0, 1}"}kek, be a family of collision-free hash functions
andH = {H,} a hash family. LeHash = (Setup, Eval) be a corresponding hash
scheme. Lef, = {f : {0,1}' = {0,1})"} be a family of universal hash functions.
fa...a5(S0,--.,S6) = So+a1S1 + - - - + 8Ss and eachn-bit string s is interpreted as
an element in GF(D.

The Halevi—-Micali commitment schem8dtup’, Com’, Ver’) is defined as fol-
lows:

Scheme 5.2.1For simplicity, we set = 7n.

Setup’(1"): The setup algorithm obtaims— Setup(1") and outputparam= a.

Com’(a, msg: The commitment algorithm computes— hy(msg, picks a ran-
domr € {0, 1}', computes/ « hy(r), and picks a random functioh € ¥ for
which f(r) = s. Then it outputs¢mt ov) = ((f,y), r).

Ver’(a, (f,y), msgr): The verification algorithm acceptsyf= h,(r) andf(r) =
ha(msg. Otherwise, rejects.

.....

as follows: Choose random elemeats. .., as and computeg = rgl(s— (ro +
airy + -+ asrs)) if rg # 0. If rg = 0, choosesg at random.
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Halevi and Micali showed that the scheme is computationally binding if
is collision resistant and statistically hiding with the distance. 2Note that the
length of commitment i§/| + |f| = n+ 6n = 8n and the length of decommitment is
Im| + |r] = |m + 7n if we use the above universal hash functions. We will employ

this commitment scheme [@hapter §

5.3 A Lattice-based String Commitment Scheme

Here, we review a more direct and simpler construction from the lattice-based hash
functions without the universal hash functio@€T[X08]. The input of the com-
mitment function is amm-bit vectorx obtained by concatenating a random string
o = (p1,...,pm2) € 10,1}2 and a message strirgy= (s, ..., Sm2) € {0, 1}™?,
i.e., X = pose{0,1}™. We then define the commitment function on inpsind
p as

Coma(s; p) := ha(x).

We define our non-interactive string commitment sch&MEE by using the above
commitment function:

Scheme 5.3.1LNIC, [KTXQ0S]).

Setup(1"): Given input I, the algorithm sample®\ € Zg™ and outputs
param= A.

Com(A, msg= s;p): Given inputsA ands e {0, 1}™?, the algorithm samples
p « {0,1)™2_ It computesc «— Coma(s; p), and outputemt= c andov = p.

Ver(A, ¢, s, p): The algorithm checks thatp € {0,1)™2 andComa(s;p) = C.
It outputs 1 if the checks are passed, 0 otherwise.

Lemma 5.3.2. If q is a prime andm > 2n(1 + ¢)logq for some constand,
if SIS;m ym Is hard on the average, then Camis a statistically-hiding and
computationally-binding string commitment scheme in the trusted set up model.

Proof. The computationally-binding property immediately follows from the
collision-resistant property. We now show the statistically-hiding property.

Let A = [a;---am]. We then haveComa(s;p) = Y2 piai + 27 S @iemy2-
Applying the leftover hash lemma, we can say that a random subset sanmsof
statistically close to the uniform distribution for almost all choicesg;of

In our proof, we consideZg as a finite Abelian grou. Sincem > 2n(1 +
6)logg, we have that
Gl \"*
( ) < q—én/4
2m/2 - ’

Thus, byLCemma 4.3.Bfor all but an at most;®"* fraction of A = [ay, ..., am] €
zg™, we have that\(u, ¥icmy2) pidi) < g4, whereu e Zg is uniform random
variable. Assume that we have sush So, we have\(u, Coma(0™?; p)) < g 9",
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By the definition ofComa, for any s € {0,1}™2, we haveA(u, Coma(s,p)) <
q~°"4, By the triangle inequality, we obtain

A(Coma(sy; p1), Coma(s; p2)) < A(u, Coma(sy; p2)) + A(u, Coma(sz; p2))
< 2q—6n/4’

for any messags; ands,. This shows that, for all but negligible fraction of choice
of A, distributions of two commitments are statistically close.
i

5.3.1 Extending the Domain

Notice that the message space of commitment function is simply extended by the
using combining collision-resistant hash function {0, 1}* — {0, 1}™? [KRO(].
New commitment functioiCont is defined by

Coni(s; p) = Con(h(s); p).

We here take more direct way to extend the domain. The spirit of the proof
is essentially same as that of Krawczyk and RaliR(Q0Q]. Using the Merkle—
Damgard techniqueMer8S [Dam89, we obtain a string commitment scheme
whose commitment function i€oma : {0, 1}* x {0,1})™2 — Zg rather than
Coma : {0, 1J™2 x {0, 1}™2 - Z{ as the following.

Assume thatm = 2r. Let A = [B|C], whereB,C ¢ ngr. For X € ngr, we
definefy : {0,1} — Zg as the hash functiofi(s) = Xsmodgq.

To apply the Merkle-Damgard technique, we need two utility functions in our
case. Letl be[nlogq] and lett : Zg — {0, 1)' be some one-to-one function
that we computé andt™?! efficiently, sayt(a) outputs a binary string representing
ieln] ag~l. Next, letpad : {0,1}* — {0,1}* be the padding function for the
Merkle-Damgard construction. We employ Merkle’s padding funcpad pads
with 0 and adds the length information to the original message. Letl® <
r — | be the length parameter. Formally, if we have a block compression function
f : {0,1)" — {0,1}' the padding function works on inpst € {0, 1}* of length
0 < a < 2° as follows.

pad(s) = so 10F o leny(a),

whered is the smallest non-negative integer such thatd + b + 1 is a multiple of
r — I, bis some fixed integer lg(a) denotes thé-bit representation of the integer
a.

Applying the Merkle—-Damgard construction fg, we obtain new hash func-
tionhc : {0, 1} — Zg. The precise definition dic is as follows:
1. On inputs, obtain a padded messae— pad(s)
2. Chopitinto So,..., Sk), whereS; € {0,1}'"!

3. Let Hp = 0 (more generally, some fixd¥ can be used)
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4. Fori =1tok+ 1doH; « fc(t(Hi-1) o Si-1)
5. OutputHg1

Our new commitment scheme is defined as follows: far {0, 1}* andp €
{0,1),
Coma(s; p) := hc(s) + fe(p) moda.

Lemma 5.3.3.If there exists a polynomial-time machine outputting a collision for
Comy, then there exists a polynomial-time machine outputting a collisiori for

Proof. Let us assume that we obtain a collisiad), (5,0) € {0, 1}* x {0, 1}" for
Coma. By the assumption, we have

hc(s) + felp) = he(8) + fa(p) (moda).

If p = p, we haves # Sandhc(s) = he(9). Using the reduction for the Merkle-
Damgard construction (see e.dKLI0O7, Thm. 4.14]), we obtainu # T € {0, 1)"
such thatfc(u) = fc(Tl). Thus, we have a collisiono p, lio p € {0, 1} for fa.

Next, we assume that # . LetS andS be padded messages ®and g
respectively. Assume th&tandS are chopped intoSp, . .., Sx) and S, . . ., Si),
respectively. LetHx and H, be inner hash values f&and S'in the algorithm,
respectively. By the definition dfly andH, we obtain

he(s) = fe(t(Hk) o Sk),
he(3) = fe(t(Hk) o Sk).

Combining the above equations with the assumption, we obtain
fa(t(HK) 0 Sk o p) = fa(t(Hi) o Sk 0 p).

So, we have a collisiot{H) o Sk o p andt(Hy) o Sy o 5 € {0, 1}Z for fa. O

We use this commitment scheme in the rest of the paper. We often abuse
the notation ofComa. For exampleComa(vy, Vo; o) denotesComa(stringfvy) o
stringf); p), where stringy) is a binary representation of

5.4 An ldeal-Lattice-Based String Commitment Scheme

UsingILHash in[Section 4.4we also obtain a simple string commitment scheme.
We first extend the notation @om Fora e Rfmq,

Comy(-) = CoMRoy(x)(:)-

We define our non-interactive string commitment schéhiC.

Scheme 5.4.1ILNIC, [KTX08]).
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Setup(1"): Given input I, the algorithm samples € Rf”jq and outputparam=
a

Com(& msg= s;p): Given inputsA ands € {0,1}™?2, the algorithm samples
p — {-1,0,+1)™V2 |t computesc « Comy(s; p), and outputEmt = ¢ and
oV =p.

Ver(3, ¢, s, p): The algorithm checks thate {0,1)™2, p € {-1,0,+1)™¥2 and
Comy(s,; p) = c. It outputs 1 if the checks are passed, 0 otherwise.

We apply Micciancio’s regularity lemma tbHash and obtain the statistically-
hiding property of a string commitment scheme.  Straightforwardly, the
computational-binding property follows from the collision-resistant property of
the underlying hash function. Formally, we obtain the following lemma as in

Lemma 5.4.2. Letf € Z[X] be a monic and irreducible polynomial of degnee
Letq be a prime polynomially bounded by Letf = [y fi is the factorization
of f overZg. Let

A= %A(q,f,?,) = %Jl—[(l_,_ (%)deg(i)) 1

ie[t]

defined in[Seclion 4.4]2 The schemdLNIC is a statistically-hiding and
computationally-binding string commitment scheme in the trusted setup model if
f-SISZ]"’m’1 is hard on average and i is negligible inn.

Furthermore, letEz = EF(f,3). Letm > 4logq andq > 3Esmr?/?logn.
Then, fory = 8E§mn|og2 n, if f-SVP}" is hard in the worst case antlis negligible
in n, the schem&.NIC is a statistically-hiding and computationally-binding string
commitment scheme.

In particular, letf = x2 + 1 with k > 2 and g = 3 mod 8 the scheme is
statistically hiding byLemma 4.415

Using the Merkle-Damgard technique, we obtain the string commitment scheme
whose commitment function 8omy : {0, 1}*x{0, 1}™V2 Zg rather tharComj :
{0, )™V2 x {0, 1}™V2 — Zg.
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ldentification

This chapter contains identification (ID) schemes based on lattice problems and
new security proofs for the variants of the Micciancio-Vadhan ID scheme.

Organization:  [Secfion 6.]lintroduces public-key identification, the construc-
tion idea, and comparisongSection 6.Previews the definitions of identification
schemes. We review the several identification schemes in this chapt&ecin

we review the Micciancio and Vadhan protocol. The ID schemes based
on them are ifSection 6.4[Section 6.Feviews the identification scheme given by
LyubashevskySection 6.8eviews Stern’s protocol and, based on it, we review the
Kawachi—Tanaka—Xagawa identification scheéfeetion 6.7 Finally, we review

the new Lyubashevsky identification[8ection 6.8

6.1 Introduction

We have already noted hash schemes and commitment schemes in the previous
chapters|[Chapter #and[Chapter . We next describe the identification (ID)
schemes based on lattice problems, which are directly based on the lattice-based
hash schemes.

Roughly speaking, in aublic-keylD scheme, a user registers its public key
to a server. When the user wants to log in the server, the user proves its identity
to the server by using a protocol. The security is captured by any polynomial-
time adversary cannot impersonate the user. For the details of model and security
notions, sei&ection 6.P

Micciancio and VadhariNIVO3] proposed ID schemes based on lattice prob-
lems, such as GapSVP or GapCVP. These schemes are obtained from their sta-
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6.1. INTRODUCTION

tistical zero-knowledge protocol withfficient provers for the lattice problems.
Lyubashevsky also constructed lattice-based ID schemes secure against active at-
tack [Lyu08¢. Kawachi, Tanaka, and XagawlTX08] proposed the ID schemes
which are based on Stern’s ID schen&d9§. Finally, Lyubashevsky gave an
efficient ID scheme based on the ideal-lattice-based hash funclipn@q].

These ID schemes (except the one of the Micciancio and Vadhan ID schemes)
are secure againsoncurrentattacl under the assumptions on theorst-case
hardness of lattice problems.

6.1.1 Main ldeas

In this section, we only discuss the ID schemes based on lattice problems rather
than ideal-lattice-based ones, which is mainly same to the lattice-based one.

Quick remainder of the lattice-based hash family: We use the above rela-
tionship for our security reduction. Hence we mainly deals with SIS instead of
GapSVP. Recall the lattice-based hash fartifyg, m) = LHash with a domain

Dn € Z™ A key is a random matribA € Zg*™. Fore € Dy, a hash value is
ha(e) := Aemodg. Letd, be the maximum length of vectors By,. A collision

(e €) of the hash functios implies a solutiorz = e — € of SIS m24,. Thus, the
security of the hash family is based on the worst-case hardness of GapSVP with
approximation facto©(d, - v/n) by[Theorem 2.419

Strategy to obtain concurrent security: The rough idea to obtain the concur-
rent security is summarized as follows: Fix the security parannetad let#,, be a
family of collision-resistant hash functions. L&t be the hash function with a key
a. The secret key is € Dy and the public key isl = hy(€). The prover proves its
possession of by a witness-indistinguishable and proof-of-knowledge (WIPoK)
protocol. (The properties are defined later. Seetion 6.P) In a proof, a simu-
lator simulates the prover oracle by using a secrete&keyy using the knowledge
extractor of the protocol, the simulator extracts a secregkeych thah,(€') = u.
Then, it outputse ande’ as the collision of the hash functions. The witness indis-
tinguishability ensures that+ € with certain probability.

Applying this strategy to the lattice-based hash functions, we can consider the
following general construction: The public parameteiAiss Zg“™. The secret
key ise € Dy, and the public key isi «— Aemodq. The protocol is a WIPoK
protocol for NP problem. The obtained scheme is IéBsient because it employs
the general WIPoK protocol.

1 In passive attackan adversary could only eavesdrop the transaction between the prover and
the verifier. Inactive attack an adversary could interact with the prover prior to impersonation.
In concurrent attackan adversary could interact with manyfdrent prover “clones” concurrently
prior to impersonation. Each clone has the same secret key, but has independent random coins and
maintains its own state. After interacting with many clones, the adversary tries impersonation. See
the definition irfSection 6.P
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To make a schemefliient, the researchers tailored the protocols in the
scheme. There are severaffdiulties to construct the protocol. We describe them
and how to overcome them in each sections.

6.2 Definitions

In order to define models and security notions, we need to define protocols. In
addition, we define properties of them.

6.2.1 Protocols

Provers and verifiers: An interactive algorithmA is a stateful algorithm that,
given an incoming messagd#, and state informatiost, outputs an outgoing mes-
sageMgy: and updated statst’ (we will write (Mgyg, St) <« A(Min, st)). We say
thatA accepts ist = 1 and rejects it = 0.

An interaction between a proverand a verifiel ends wherV either accepts
or rejects. We will write

(tl’, de() — Run[P(pl, o )OPl"" o V(Vl, . )OV1,...]

to indicate that we leP having the accesses to the oradl®R, ... interact with
V having the accesses to the oracl®¥,, ..., having provided bottP andV with
fresh random coins, to get a transctipand a boolean decisiatec

Properties of Protocols
We first review the definition of giewof the verifier.

Definition 6.2.1. Let (P, V) be an interactive protocol/’s view of (P, V) on com-
mon inputx, P’s inputw, V's input z is the random variabléP(w), V(2))(X) =
(r;my,...,m), wheremy,..., m are exchanged messages betweemdV andr
is a random tape of. That is, a random tape and a transcript betweandV.

We say an interactive protocol is an interactive proof system if the prover
proves the validity of the instance with the languagd. with completeness at
least 23 and soundness at leagBl

Definition 6.2.2 (interactive proof system)Let (P, V) be an interactive protocol.
(P, V) is said to be an interactive proof system for a languaggV is probabilistic
polynomial-time algorithm and the followings hold:

1. For everyxe L,

FI?\E[dec: 1:(tr,deg « Run[P(X) & V(X)]] = 2/3.
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2. For everyx ¢ L and for everyP*,

'E’\s[dec: 1: (tr,degd « Run[P*(x) & V(X)]] < 1/3.

The quantities 23 and %3 can be replaced witbh andc — 1/ poly(n), wherec €
(0,1) is a constant andis the security parameter.

Zero knowledge: The zero-knowledge property captures the interaction to the
proverP does not provide a knowledge with even a cheating venfiecomputa-
tionally. (The interaction may give a knowledge to the verifier but this knowledge
is useless for the polynomial-time algorithvih.) The idea is formulated by a sim-
ulator. If there is a simulator having no knowledge on witness and interacting with
V*, the provided knowledge is useless Y61 We employ the black-box simulator
definition for simplicity. SeelGol01, Section 4] for the details and the discussions
on strength of definitions.

Definition 6.2.3 (black-box simulation zero knowledgeyve say an interactive
proof system B,V) for L is a perfegistatisticaglcomputational-zero-knowledge
protocol if there exists a probabilistic polynomial-time algoritBim such that

1. forall x e L, Pr[Sim¥"(x) = 1] < 1/2,

2. for every probabilistic polynomial-time* and for anyx € L

sim’ (1", %) =pss/c (P, V)(1", ),

—V* N . .
whereSim  (s) denotes the output distribution 8im having the oracle access
to V* on inputs, conditioned or8im(s) # L.

Witness indistinguishability: Let L be an NP language, that is, there exist a
polynomial Q. (-) and a polynomial-time algorithml_ such that,

1. For everyx € L, there existsv € {0, 1}2-(X) such thaMy (x, w) = 1.
2. For everyx ¢ L and for anyw € {0, 1)) M, (x,w) = 0.

Then, we can define the binary relatiofR =  {(xww €
(0,1} such tham (x,w) = 1}. Suppose thak has two witnessess and

w’ such that x, w) and &, w’) in R_. The witness indistinguishability says that the
verifier cannot distinguish which witness the prover uses even if the verifier knows
both witnesses. The formal definition is given below.

Definition 6.2.4. Let L be an NP language. Le®P(V) be an interactive proof sys-
tem for L. We say thatR, V) is (perfectlystatisticallycomputationally) witness-
indistinguishable if for every probabilistic verifi&f* running in time polyf) and
for any fixedx € L andz € {0, 1}*, for any two withesseg; andws, for x

(P(w1), V*(2)(1", X) ~p/s/c (P(W2), V*(2))(1", X).
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If the protocol is (perfectljstatisticallycomputationally) zero knowledge
then the protocol is (perfectistatisticallycomputationally) witness indistinguish-
able ES9(). We omit the definition of witness hiding because we do not exploit
this property explicitly. SeeqS9() for the definition.

6.2.2 Model of Identification Schemes

We adopt the definition of identification schemes givemMABNO2]. An identifi-
cation schem&ID is a quadruplet of algorithmsétup, KG, P, V).

Setup(1™): A setup algorithm, given the security paramet@r dutputs public
parameterparam

KG(param): A key-generation algorithm, given the public paramgiaram
outputs a key pair of a public key and a secret kuky K.

P(param pk, sk, V(param pk): (P, V) is an interactive protocol. A prover algo-
rithm P takesparam pk, andskas inputs. A verifier algorithiv takesparam
andpk as inputs. At the end of interactiov,outputs O (reject) or 1 (accept).

We require the natural correctness condition; For paramand @k, sk gen-
erated bySetup(1") andKG(param), the decision o¥/(param pK) interacting with
P(param pk, sK) is 1 with probability 1. That is,

param« Setup(1");
Pridec=1: (pk sk < KG(parami); =1
(tr,deg « Run[P(param pk, sk « V(param pK)];

An ID scheme is said to beanonicalif the protocol is 3-move and public coin,
that is,
P = (P1,P2): A prover algorithm consists of two algorithrRg andP».
P1(param pk, sK): A first prover algorithm, givermparam pk, andsk out-
puts a commitmentmtand its state informatiostp.

P»(ch,stp): A second prover algorithm, given a challengeand a state
informationstp, outputs a respongep.

V = (V1,V2): A verifier algorithm consists of two algorithng andV,.

V1(): A first verifier algorithm chooseh < C uniformly at random and
outputsch.

Vs (param pk, cmt ch, rsp): A second verifier algorithm, giveparam pk,
cmt, ch, andrsp, returns 0 (reject) or 1 (accept).

In the first move, the prover invok&s and sendsmtto the verifier. In the second
move, the verifier invoke¥; with its randomness and sencls where this is the
public coin since/1 is the identity algorithm. In the third move, the prover invokes
P, and sendsspto the verifier.
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6.2.3 Security Notions

We are interested in concurrent attack, which is stronger than active and passive
attack. We employ the definition of concurrent securityBP02. In concur-
rent attack, the adversary will play the role of a cheating verifier prior to imper-
sonation and can interact manyffdrent prover clones concurrently. Each clone
has the same secret key, but has independent random coins and maintains its own
state. We sa)8ID is secure against impersonation under concurrent attack, if
any polynomial-time adversary cannot, given a random public key of a legitimate
prover, impersonate the legitimate prover.

We describe the formal definition as follows. Consider the experiment
Expg‘?g’;tk(n) between the challengérand the impersonatofi = (CV, CP), where
atk € {pa aa ca.

Experiment Expisr‘?g';tk(n):

Setup Phase:The challenge€ obtainsparam « Setup(1"). Next,C ob-
tains pk sk «— KG(param) and setS « 0, wherePS denotes the set
of prover’s sessions. The impersona@¥ is given the security parameter
1", the system parametparam and the target public kgyk.

Learning Phase: The impersonatolCV can query to the prover oracle
Prov.

e The oracleProv receives inputs, Mi,. This oracle changes its be-
havior in three attacks.

— If atk = pa, it obtains t{f,degd « Run[P(parampk sk <
V(param sK)] and returnstf, deq to the adversary.

— If atk = aa, it runs as follows: |6 ¢ PS then it setPS « {s},
picks a random coip, and sets a state of the provas[s] «
(param sk p). Next, it obtains Moy, Stp[S]) <« P(Min, Stp[9]).
It returnsMgyt.

— If atk = ca, it runs as follows: Ifs ¢ PS then it addss to
PS (that is,PS « PS U {s}), picks a random coip, and sets
a state of the provests[s] « (paramsk p). Next, it obtains
(Mout Stp[S]) « P(Min, stp[9]). It returnsMgyt.

Challenge Phase:CV outputsstcp. The challenger givestcp to CP. Fi-
nally, the challenger obtaing (deg <« Run[CP(stcp) <« V(param pK)]
and returnslec

Notice that if atk= pa the adversary could learn only transcripts between the
legitimate prover and verifier. If atk aa, the adversary could interact with the
legitimate prover sequentially and has the power to abort the session. 3feak
the adversary interact with the legitimate prover concurrently by indicating each
interaction with session identifier.
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Definition 6.2.5. Let SID = (Setup,KG, P, V) be an ID schemeA = (CV, CP)
an impersonator, and a security parameter. We define the advantagéiais

AdveP2K(n) = Pr[ExpiSrTg';tk(n) = 1|. We say thaID is secure against imper-
p-atk

sonation under passive, active, and concurrent attaddvig'Dﬂ (-) is negligible
for every polynomial-time adversarfl where atk= pa aa ca, respectively.

Special Soundness

We say a canonical ID scheme is special sound if an adversary, gaem
and sk outputs ¢mt chy,rsp;) and €¢mt chy, rsp,) in the challenge phase with
non-negligible probability such thathy # chy and Vy(param pk, chy,rsp;) =
Va(param pk, cmt chp, rsp,) = 1 then we can computk corresponding t@k.

We say a canonical ID scheme is BS-special sound (in Bellare and
Shoup BS0§) if no polynomial-time adversary in thExp'S'fl‘S:;{tk(n) cannot out-
puts €mt chy, rsp;) and €mt chy, rsp,) in the challenge phase with non-negligible
probability such thatdh,rsp;) # (chp,rsp,) and Va(param pk chy,rsp;) =
Va(param pk, cmt chp, rsp,) = 1.

Often, the BS-special soundness is a stronger requirement than the special
soundness.

6.3 The Micciancio—Vadhan Protocol

In [MV03], Micciancio and Vadhan proposed statistical zero-knowledge proof sys-
tems for GapCVPand GapSVE. Here, we only discuss the one for GapGVP
Their protocol can be considered a zero-knowledge variant of the coAM protocol
by Goldreich and GoldwasséB{50(.

Scheme 6.3.XThe MV Protocol MV03]). The protocol is parameterized by an
integerk. The common input s a triple t, d), which is an instance of GapCyYP
Prover’s auxiliary input is a lattice vect@w € A such that|t — Bw|| < d. In the
following, we denote — Bw by u.

Step P1 (commitment):
1. Fori =1,...,k, choose; € {0,1} andr; € B(6d/2) uniformly at random.
2. Check that there exists an indéxsuch thatr;- + (2¢i- — L)u|| < 6d/2
and stora*. Otherwise, set* = 1 and redefinei- = 0 andrj- = u/2
to satisfy||r- + (2¢i+ — L)u|| < 6d/2. (This procedure makes the protocol
perfectly correct.)
3. Computey; = ¢t + ri mod B for all i.
4. Sendys, ..., Yk to the verifier.
Step V1 (challenge):Flip a fair coinc < {0, 1} and send it to the prover.
Step P2 (response)Receive a bit € {0, 1}.
1. ComputeBv; = y; — (r; + ¢it) for all i.
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2. Ifc# @i ¢i then replace;- andBvi- by 1— ¢i- andB(vi- + (2¢- — 1)w).
3. Sendcy, ..., cc andvy, ...,V to the verifier.

Step V2 (verification): Receivek bits cy,...,cx andk vectorsBvy, ..., Bw €
L. If @,c = candlly; - (Bv +cit)|| < 6d/2 for all i the verifier accepts,
otherwise rejects.

Intuitively, when the instance is an YES instance, the provercteatby r;-
in both ballsB(0, 6d/2) andB(t, 6d/2) since two balls overlap fiiciently. When
the instance is a NO instance, two balls do not overlap and the prover cdreaot
We note that the protocol is alreadtyconcatenated by the ORing composition.
Notice that we can simulate the prover oracle in passive attacks, since the protocol
is honest-verifier statistical zero knowledge.

The properties of the protocol are summarized as follows:

Theorem 6.3.2([MV03, Lemma 4 and Corollary 6])Suppose that the security
parameter isn, and A(B) € Z™, wherem = poly(n). The above system is a
statistical zero-knowledge proof system (BapCVFE with perfect completeness
and soundness errdt/2, provided one of the following conditions holds true:

e 5 = Q(y/m/ logm) andk = poly(n) is a syficiently large polynomial,
e or 6 = Q(+/m) andk = w(logn) is any super-logarithmic function of
e or § = M52 andk = w(1) is any super-constant function of

PreC|ser speaking, there exists a simula®in such that the statistical glerence

of Slm (B, t,d) from (P, V*)(B, t,d) is at most2 - (1 — 5(2/6))%, wherep(e) is
the relative volume of the intersection of twedimensional unit spheres whose
centers are at distance. Additionally, the protocol is honest-verifier statistical
zero knowledge. Furthermore, there exists a knowledge extr&&pif there ex-
ists a cheating proveP* who maked/ accept with probabilityl/2 + € on some
instance(B, y, d) thenKEP" (B, t, d) outputs a lattice vectoBw € £(B) satisfying

It — Bw]| < 6d in time poly(n)/€2.

The above parameters are obtained by the bogfs) > max3 -
expe’m/2), 1 — e Vmy}. See, for exampleGG0Q.

6.4 The Variants of the Micciancio—Vadhan Schemes

Combining the lattice-based hash family with the MV proto®dW/03], we obtain
several ID schemes. In this section, we argue their concurrent security.

In [MV03], Section 5], they discussed identification schemes using their proto-
col. A summary of their discussions is as follows:

1. A passively secure(logn)-round ID scheme is obtained by sequential com-
position. The public key is an YES instand®, ¢, d) and the secret key is the
corresponding witnesBw.
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2. A passively secure 3-round ID scheme is obtained by parallel composition.
The public key is two YES instances of GapC\dhd the secret key is one of
the corresponding witness.

3. A concurrently secure 3-round ID scheme is obtained by parallel composition
and the ORing technique. The public key is two YES instances of GapCVP
and the secret key is one of the corresponding witness. (Applying techniques
of De Santis, Di Crescenzo, Persiano, and YUDEDCPY94 and of Feige
and ShamirlES9(), the ID scheme can be proven to have concurrent security.)

4. (MV-IDg_p) A passively secure 3-round ID scheme is obtained by using ran-
dom IatticesAdL(A) under the worst-case assumptions of lattice problems. In
order to obtain keys, one computes a public ey Zg*™ and a secret key
e € {0,1}™such thatAe = 0 (mod q). (See/Ajt96].) The prover, given a com-
mon input B, ¥m) and an auxiliary inpug, proves thae € Ag(A) is short by
using the MV protocol for GapS\é’P

5. (MV—IDgL’p) A concurrently secure 3-round ID scheme is obtained by applying
the ORing technique to the above passively secure ID scheme.

6. A passively secure 3-round ID scheme is obtained from the assumption that
GapCVP with preprocessing (for the state-of-the-art hardness results of this
problem, see AKKV05]) is hard for some approximation factor. The third
party chooses a common random matix Each user chooses a short error
vectorx as a secret key, and computes a public keyx mod B.

Their discussion (4) says that, by combining their protocol for GapSarte
random latticesA*(A), we obtain an ID scheme which is secure against imper-
sonation under passive attack under the worst-case hardness assumption of lattice
problems. Their discussion (5) also says that we have a concurrently secure ID
scheme based on the worst-case hardness of lattice préblems

An Observation: In more direct way, we obtain concurrently secure ID schemes
(MV-ID{}) by combining the lattice-based hash familiggq, m) or #(f, g, m) and
the protocol for GapCVPwhich are similar to the ID schemes in their discussion
(6); The common lattice is set to be&(A), where the third party publishe&
uniformly chosen fronZg“™. The secret key isand the public key ist = Ae mod
Q.

A syndromeu indicates a target vectare Z™ such thatAt = u (mod g). (See
[GPV0§ Section 5.1] for this isomorphism between a set of syndrome and that of

2 In [Lyu083 Section 1.2], Lyubashevsky wrote * In this wollY/03], the authors [Micciancio
and Vadhan] show arflecient-prover SZK proof system for certain lattice problems and mention that
one convert the proof system into an identification scheme. The conversion is non-trivial (due to the
problem of zero-knowledge not being closed under parallel-composition), and many details remain
to be filled in.” But, it is easy to verify that the conversion yields a concurrently secure ID scheme,
as they and we discussed in @ﬂ)/-IDng. We note that the assumption is the worst-case hardness

of SIVPs15) and it is weaker than that of SI\§Rz) Lyubashevsky used iiLyu08¢.

63



6.4. THE VARIANTS OF THE MICCIANCIO-VADHAN SCHEMES

target vectors.) We can compute a close vector in lakieet — e € A+(A). The
distance betweemandt is exactly||x||> which is at most,. So, the prover will run
the MV protocol for a basi8 of the IatticeAqL(A), a target vectot, a thresholdi,
a parametes, and a secret vectot.

The detail is in the next section.

6.4.1 Concrete Schemes

Let us describe the ID schemes, nam@d-ID|", whereL € {GL, C/IL} denotes
the underlying hash functions ande {p, s} denotes parallel and sequential com-
position.

When we use ideal-lattice-based hash functions, we replaaith mn We
denote a set of keys of a hash familyby Ky, which isZg“™ in the case of the
lattice-based hash familyHash and Rot(R'f“) in the case of ideal-lattice- based
hash familylLHash. Letd, andd., denote max|e||2 e e Dp} and max||€||, :

Dn}, respectively.

Scheme 6.4.IMV-ID[7). All of the participants agree the parametersy, f, Dn,
ands = Q(+/n/logn). The concrete schenéV- ID++ is defined as follows.

Setup(1"): Given the security parametef,the setup algorithm choosés «
KS, whereK, = ngm if L = GL andK,, = Rot;(Rfrf‘q) if L = C/IL. In the
following, B denotes a basis of;(A) and all of the participants agree the
matrix B, say an Hermite normal form of the public lattice.

KeyGen(A): Given the public parameteA, the key-generation algorithm
choosese « Dj uniformly at random, computas <« Aemodg, and out-
puts pk, sk « (u, e).

P and V: They interact as follows:

1. Compute a target vectare Z™ or Z™ such thatAt = u (mod q).

2. (The prover) computg =t — e.

3. IfL=GLsetd=d,. If L=C/IL setd = Ymn-d,,

4. They setB, t, andd as the common input and as prover’s auxiliary
input. On the conditior € {p, s}, they run the MV protocol for GapCV,P
in parallel or sequential ih= w(logn) times, respectively.

The security of the protocol is summarized as follows:

Theorem 6.4.2. Assume thafy"/|Dy| is negligible inn. The above scheme
MV-ID/] is concurrently secure where = GL or C/IL if SIS y or f-

) 0,m,O(5d>
Slsc;omow\/_nce) is hard on average. In particular,

e if g = poly(n), m = O(nlogq), § = vm, and D, = {0,1}™, then we have
d2 = Ymand the security oMV-ID/ , is based on the worst-case hardness
of S|VPC”)(n1A5), and
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o if f is suitable,g = poly(n), m = ®(logq), § = Ymn andD, = {0, 1}™, then
we haved,, = 1 and the security oMV-ID%* _ is based on the worst-case

C/IL,*
hardness of—SVPg(nz).

In the proof, we use the simulatdV.Sim and the extractoMV.KE as the
black box.

Proof. Since the MV protocol is withess indistinguishable, so are its parallel and
sequential versions. The challenger, given a random matficom K, runs the
adversary against concurrent security. The challenger makes a sececahkeya
public keyu = Ae modg. Using the secret key, it can simulate the prover oracle
perfectly. Using the knowledge extractdiv .KE, it obtainsx’ € Aql(A) such that
It —x’|| < é6d. Thus, if X’ does not equal tx = t — e, then we have a short
vectorz = x — X’ in Aa(A) whose length is at most + 1)d, since||x — x’|| <
It — x| +|IXx —t]] < &d + ||€]. Next, we estimate the probability thatz x’. If
g"/ |Dp| is negligible inn, then a simple argument shows that, we hawex’ with
probability at least A2, since the MV protocol is witness indistinguishable.

If L=GL, dis set agl,. Thus, the length otis at most § + 1)d = O(6dy). If
L = C/IL, the thresholdi is set asymn- d.,. Hence, the max norm afis at most
(6 + 1)d = O(6 vYmn- d,). This completes the proof. O

6.5 Lyubashevsky’'s Scheme —1

We next review the Lyubashevsky ID schemg®8-ID, , [Lyu08g, whereL €
{GL, C/IL}.

The protocol is algebraic structure, while the MV protocol exploited the geo-
metric structure.

Let us recall the Random-or-Masked protocol often used in the protocols for the
number-theoretic relations. The typical example is the Schnorr proiScbei].
Let g be a generator of a cyclic grodpof order primeq. Let a common input be
(9.G, g,u = ¢°) and auxiliary inpue € Zq. In the protocol, (1) the prover chooses
r <« Zq and commitsy = ¢, (2) the verifier chooses a challenge— {0, 1},
which corresponds verifier's order to open “random” or “masked” values, (3) the
prover responds = ce+ r modq, and (4) the verifier acceptsife [0,q - 1] and
g? = u°-y. The prover opensif ¢ = 1 and it open® + r otherwise. It is easy
to show that the protocol has soundneg2 and is perfectly zero knowledge and
proof of knowledge (in addition, has special soundness).

Lyubashevsky applied this strategy to the lattice-based hash functions. The
auxiliary input ise < Dy, = {0, 1} and the common input i& andu = Ae modg.
In the first attempt, the protocol is (1) the prover chooses [0,...,D]™ and
commitsy = Ar modgq, (2) the verifier chooses a challenge— {0, 1}, (3) the
prover respondg = ce + r, and (4) the verifier accepts #fe [0,...,D + 1]™ and
Az=cu+y (modq).
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But, this direct approach fails, facing a dilemma. If we Bet q — 1, the
adversary without knowledge efcan make the verifier accept. On the contrary, if
we setD < q - 1, the response will leak the secret sincg = poly(n). If e; = 1,
the first coordinate of the resporngdakes a valu® + 1 with probability /(D + 1),
while z; cannot takes a value + 1 if e, = 0.

This problem is overcome by the discard of the response. The prover aborts
the protocol if z leaks the secre¢. The abortion makes the protocol not zero
knowledge, but we can show the protocol is witness indistinguishable by taking
the parameters carefully.

The basic protocol is defined as follows:

Scheme 6.5.1Basic protocol[[yu08d). All of the participants agree with the
parametem = m(n) andqg = g(n). In addition, they agree with the sddg, D,, and
G.

Setup(1"): The setup algorithm, giver' Lloutputs a random matri& « K.
KeyGen(A): The key-generation algorithm, given the public parameier
chooses a random vectere De and computesi < ha(€) € Zg. It outputs
(pk sK) = (u, ).
P = (P1,P2), V = (V1,V2): The common inputs arA andu. Prover’s auxiliary
input ise. They interact as follows:
Step P1: Pick a randont « D, and send/ < ha(r).
Step V1: Send a random challenge— {0, 1}.
Step P2: Computez « ce+r. If ze G, then send it to the verifier. Other-
wise, sendL and abort the protocol.
Step V2: Receivingz, accepts ize G andha(2) = cu+ .

In the following, we only discuss the case whére= GL. The choice of
the parameters is as followsn = [4nlogn], g = O(n), De = {0,1)™, D, =
{0,1,...,5m-1)™ andG = [5m- 1]"B

Lyubashevsky showed the followings:

1. Form > 10, the completeness error is at modt9) that is, Psy[dec= 1 :
(tr,deg « Run[P(A,u,e) & V(A,u)]] = (1-1/5m)™ > 0.81.

2. The protocol is statistically witness indistinguishable.

3. For anyA, Pre_oym[3€ € {0,1)™\ {€}, ha(€) = ha(€))] = 1 — 2"09a-m,

For the proofs, se@ju08q. In the next section, we give the full description of the
scheme,y08-ID ..

3 we change the verification procedure. In the original, the verifier chiggks 5m® instead of
zeG.
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6.5.1 Description

Scheme 6.5.2Ly08-ID, , [Lyu084). All of the participants agree with the param-
eterm = m(n) andq = q(n). In addition, they agree with the selg, D;, and
G.

Setup(1"): The setup algorithm, giver"loutputs a random matri& « K.

KeyGen(A): The key-generation algorithm, given the public parameier
chooses a random vectere D and computesl < ha(e) € Zg. It outputs
(Pk sK) = (u, €).

P = (P1,P2), V = (V1,V2): The common inputs ar@ andu. Prover’s auxiliary
input ise. The protocol ig-parallel ort-sequential composition of the basic
protocol. If the verifier of the basic protocol accepts at lea®b @raction of
thet protocoals, then the verifier accepts. Otherwise, it rejects.

The completeness error is reduced to at mo§t% shown by the Cherrb
bound. The security dfy08-IDg, , is summarized as follows:

Theorem 6.5.3 (Theorem 13, [[lyu08q). If there is an adversary breaking
Ly08-IDg, , in timeT and with probabilitye, then there exists an algorithm solv-
ing SIS, my in time poly(T, n) with success probabilit@(e? — 2-Y18+1) — negi(n),
whereg = 10m*>,

We omit the proofs, see the original pageylio84. We note that the proof for
the ideal-lattice-based scherg08-ID¢ ., is obtained in the similar way to the
above.

6.6 Review of Stern’s ID Scheme

Here, we turn our eyes to the identification schemes based on coding problems.
The Stern ID scheme is the first one based on the hardness of the coding problems.
Stern’s protocol deals with the decoding problem on binary codewords called the
Syndrome Decoding Problem.

Definition 6.6.1 (Syndrome Decoding Problem$BivenH € Z3*™, u € ZJ, and
w € N, the problem is finding a vectere S(m, w) such thatHe = u mod 2.

We can consider this problem as a restricted version ofglgkSby replacingH
with A and 2 withq). He indeed proposed that an analogous scherfig,iwhere
gis extremely small (typically 3, 5, or 75e96 Section VI].

Let us consider the protocol, where the common inputiss ngm, u=
He mod g, and theHamming weightv of e. Prover’s auxiliary input i®. Stern’s
protocol is a Random—Masked—Permute protocol, which allows the prover to prove
the Hamming weight of the auxiliary inpet (1) the prover commits a masked
value Hr, a permutationr, and permuted vectors(e) and n(r), (2) the verifier
chooses a challenge«— {1, 2, 3} corresponding to the order opening “permuted,”
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“masked,” and “random” values, (3) the prover open&), =(r)), (r,e + r), or
(m, 1), (4) the verifier accepts if the checks are passed. Notice that the verifier can
verify the Hamming weight o€ in the check of the permuted values.

The precise protocols is given below:

Scheme 6.6.4The basic scheme ii5fe9§). All of the participants agree with
the parametem = m(n), g = g(n), and the weightv = w(n). They also agree
the hash functio : {0,1}%¢ — {0,1}'. Let us define the commitment function
Com: {0,1}% — {0,1}' asCom(msgp) = H(p o (Msg® p)) for msgp € {0, 1},
We omit the randomness partn the description.

Setup(1"): The setup algorithm, on input"loutputs a random matrikl €
g™
KG(H): The key-generation algorithm, on inpht, chooses a random vector
e e S(m,w) and computes := He modg. It outputs pk sk = (u, €).
P = (P1,P2), V = (V1,V2): The common inputs and andu. Prover’s auxiliary
input ise. They interact as follows:
Step P1: Choose a random permutatianover [m] and a random vector
re Zg‘ and send commitments, c,, andcs computed as
e c; = Con(m, Hr),
e Cy = Con(n(r)),
e c3 = Con(n(e+r)).
Step V1: Send a random challengb € {1, 2, 3} to P.
Step P2:
e If ch=1, revealc, andcs. So, sendv = 7(e) andx = n(r).
e If ch= 2, revealc; andcs. Sendp = r andy = e+ r.
e If ch= 3, revealc; andc,. Sendy = randz=r.
Step V2:
e If ch = 1, check thatt, = Com(x), cg = Comw + Xx), andw €
S(m, w).
e If ch= 2, check that; = Com(¢, Hy — u) andcz = Com(¢(Yy)).
e If ch= 3, check that; = Com(y, Hz) andc, = Com(y/(2).
Outputdec= 1 if all checks are passed, otherwise outgpeit= 0.

In [Ste9§, Stern insisted that the protocol is SZKPoK protocol and yields the
passively secure ID scheme based on the average-case hardness of the syndrome
decoding problem, wherel andu are uniformly at random oveZg*™ and Zg.
However, we could not prove the security of the commitment function despite of
our dforts. We can show the security if we replace the above commitment with the
statistically-hiding and computationally-binding commitment. We omit the proof,
since it is given in the next section.
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6.7 The Kawachi—Tanaka—Xagawa Identification Scheme

Kawachi et al. [KTX08] observed that the key-generation algorithm of the above
basic scheme has a similar structure of the lattice-based hash furigtasis. In
addition, they also observed that, if the commitm€ninis replaced withLNIC,
the underlying problems are now {kss for an appropriatg.

Following their observations, let us repladenith A andComwith LNIC, i.e.,
Comy, in[Section 5.8n the above basic schenfecheme 6.612Then the follow-
ing reduction algorithm shows the concurrent security: On infugenerates a
secret keye € S(m,w) and a public keyw = Aemodq, and feedsA andu to
the adversary. The reduction algorithm can simulate the prover that the adversary
concurrently accesses, since the algorithm Aasde. Using the knowledge ex-
tractor for the adversary in Stern’s proof, the algorithm obtains either a collision of
a string commitment scheme or a secret #esuch thae’ # eand A€’ = u. In the
former case, the algorithm outputs the collisiang() of a hash functiotny in the
string commitment scheme. Thus, the solution for SIS is obtained bys - s'.
In the latter case, the conditian# € will be satisfied with probability at least
1/2 by witness indistinguishability of Stern’s protocol. Thus, the algorithm has the
solutionz = e—¢€ for SIS. Thel, norm of both solutions is at mosfm = O(n'/2).
From the relationship between SIS and GapSVP the assumption is the worst-case
hardness of GapS\Kp,).

6.7.1 Description

The variantSt-IDg, , (for L € {GL,C/IL} and= € {p, s}) is obtained by replacing
the string commitment scheme in Stern’s ID scheBie96 with our lattice-based
one. We adjust this parameter to connect his framework to our assumptions of the
lattice problems.
We now describe the protocSt-IDgL,* below. To simplify the notations, we
do not write random strings iBomu explicitly.

Scheme 6.7.1St-ID§, ,, [KTX08]). If + = sthe protocol is repeated sequentially

ttimes. Ifx = p the protocol is composed irparallel sessions.

Setup(1"): The setup algorithm, on input”loutputs a random matriA €
ngm. Notice that this matrix defines the hash functiohand the commit-
ment functionCom.

KG(A): The key-generation algorithm, on inpét, chooses a random vector
e € S(m,w) and computes := Ae modg. It outputs pk, sk = (u, €).

P = (P1,P2),V = (V1,V2): The common inputs arA andu. Prover’s auxiliary
input ise. The verifier accepts if all verifiers accept.

Step P1: Choose a random permutatianover [m] and a random vector
re Zg‘ and send commitments, ¢z, andcs computed as
e ¢; = Comu(m, Ar),
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o C; = Coma(n(r)),
e C3 = Comp(r(e+r)).
Step V1: Send a random challengb € {1, 2, 3} to P.
Step P2:
e If ch=1, revealc, andcs. So, sendv = 7(e) andx = n(r).
e If ch= 2, revealc; andcs. Sendp = randy =e+r.
e If ch= 3, revealc; andc,. Sendy = randz=r.

Step V2:
e If ch = 1, check that, = Coma(x), cz = Com(w + X), andw €
S(m, m/2).

e If ch= 2, check that; = Coma (¢, Ay — u) andcz = Coma(é(Y)).
e If ch= 3, check that; = Coma(y, Az) andc; = Coma((2).
Outputdec= 1 if all checks are passed, otherwise outpet= 0.

6.7.2 Security Proofs
We will show the followings and prove the security by composing them.

1. The completeness error is 0.

2. The protocol P,V) is an SZK protocol and thus it is statistically witness-
indistinguishable.

3. PrAhzgxm’a_S(m’W)[Ele’ € S(m,w), ha(e) = ha(¢)] = 1 - negl(n).

4. There is a knowledge extractlE extracting a collision ifha from an adver-
sary.

The first part is easily verified.

Next, we show that the protocol is an SZK protocol. The proof of zero-
knowledge property of the original protocol is i8tE96 Theorem 4]. Stern left
completion of the proof as the problem for reader. Thus, we give the whole proof
that Stern’s protocol is statistically zero knowledge wi@mmis a statistically-
hiding and computationally-binding string commitment scheme.

Lemma 6.7.2. The protocol is statistically zero knowledge when Com is a
statistically-hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulat®mwhich on inputA and

y and given oracle access to a cheating verifiér outputs a simulated transcript.

A real transcript betweeR andCV on inputA andy is denoted byP, CV)(A,Y).
First, S chooses a random valuefrom {1, 2, 3} which is a prediction what

value the cheating verifie€V will not choose. Next, it chooses a random tape

of CV, denoted byr’. We remark that, by the assumption on the commitment,

the distributions of a challenge fro@V in the real interaction and that in the
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simulation are statistically close.

Casec = 1: S computest’ € Zg' such thatAx’ = y by using linear algebra. Next,
it chooses a random permutationover ], a random vector’ € Z', and random
stringspj, p5, andps. So, it computes

e ¢} :=Conm(n’, Ar’; p7),

e C, := Con(n’'(r'); p3),

e c; = Con(n’ (X" +I'); p5).

It sends them taCV. Since the commitment scheme is statistically hiding, the
distribution of a challenge fron€V is statistically close to the real distribution.
Receiving a challengeh from CV, the simulatorS computes a transcript as fol-
lows:

e If ch=1, S outputsL and halts.

e If ch= 2, it outputs (’; (¢}, C}, C3), 2, (', X" + I, p1, 0%))-

e If ch= 3, it outputs (’; (¢}, ¢;, C3), 3, (7', I, p7. P5)).

We analyze the casd = 2. In this case, we obtain that

(P,CV)(A,y) = (r;(C1,C2,C3), 2, (m, X + I, p1, p3),
S(Ay) = (r';(c], 5, ¢5), 2, (', X' + 1, p. p3)).
Assume that#’, 1", o1, p3) = (7,1 + X = X, p1, p3). By this equation, we have that
c} = €1, C; = c3, and the responses from the simulator equal to the responses from
the prover. Since the commitment is statistically hiding, we have the distributions
of ¢z andc, are statistically close. Thus, we conclude that the both distributions of
the simulated transcript and the real transcript are statistically close.

Itis straightforward to show it in the cash = 3 by using the equation{, r’) =
(7r, r). Thus, we omit this part from the proof.

Casec = 2: S chooses a random permutatigrover [m], two random vectors’ €
zg, X' € S(m m/2), and random strings;, o5, andp;. S computes commitments

e C = Con(r’, Ar’;p’l),

e ¢, = Cont'("); pp),

e c; 1= Com(z' (X' +1'); ).

It sends them t€V. Receiving a challengeh, the simulator computes a transcript
as follows:

e If ch=1, thenS outputs (’; (¢}, ¢}, C3), L, (n'(X), 7'(1"), p5, p3))-
e If ch= 2, then it outputsL and halts.
e If ch= 3, then it outputsr(; (c’l, c,, c’3), 3, (7, r’,p’l,p’z)).
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We analyze the cas = 1. In this case, we have that

(P, CV)(A’ y) = (r’ (C]_, Co, C3)a 1, (7T(X), ”(r)’ PZ,P3),
SIAY) = (5 (6} 6 &), 1 (T (<), 7 (1), ).

Let y be a permutation ovenr] such thaty(x’) = x. In this case, we set
(', v, 05 05) = (x "t o 7, x(r), p2, p3). By this equation, we havg, = ¢y, ¢} = c3,
and the responses from the simulator equal to the responses from the prover. Since
the commitment scheme is statistically hiding, the distributions of the real tran-
script and the output of the simulator are statistically close.

We omit the proof of the caseh = 3, since it is trivial.

Casec = 3: S chooses a random permutatisrover [m], two random vectors
re Zg”, X" € 8(m,m/2), and random strings,, p», andps. S computes

e C1 := Com(m, A(X' + 1) - Y, p1),
e C := Con(n(r); p2),

e C3:= Com(n(x' + r); p3).

It sends them t€V.

e If ch=1, thenS outputs (’; (c1, C2, C3), 1, (m(X'), 7(r), p2, P3)-
e If ch= 2, then it outputsr(; (c1, Cp, C3), 2, (1, X' + ')).
e If ch= 3, it outputsL and halts.

In the casech = 1, we consider the equation’(r’,p},03) = (xto
m, x(r), p2, p3). The remaining part of proof is the same as that in the case2
andch = 1. In the caseh = 2, we let ', ", 0}, p3) = (7,1 + X = X', p1,p3). The
remaining part of proof is the same as that in the casel andch = 2.

The probability that the simulata$ outputs_L is at most 13 + e(n) < 1/2
wheree is some negligible function. Additionally, by the above arguments, the
distribution of the output of conditioned on it is not is statistically close to the
distribution of the real transcript. Therefore, we have constructed the simulator and
completed the proof. m|

Since the protocol is statistically zero knowledge ffot 1, it has a witness-
indistinguishable property. Witness-indistinguishable property is closed under the
parallel compositionfS9(. Thus, the above protocol is witness indistinguishable
for t = w(logn) if a statistically-hiding string commitment scheme is used.

We show the theorem of the security on our ID protocol, which concerns im-
personation under concurrent attack.

Theorem 6.7.3.For anyq = poly(n), m > 2(1+ §)nlogq for some constant > 0,
andw = w(logm) such thatq"/ |S(m, w)| is negligible inn, the above ID scheme
St-IDg, , is concurrently secure BIS, ., \ is hard on average.

Before the proof of security, we need to mention the following trivial lemma,
which corresponds to the third part.
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Lemma 6.7.4. For any fixedA, letU := {u € Z§ | l{e€ S(m,w) | Ae = u}| = 1},
i.e., a set of vectors such that the preimageof u is uniquely determined fo.
If g"/1S(m, w)| is negligible inn, then the probability that, if we obtaifu, €) «
KG(A), thenu € U is negligible inn.

We now provélheorem 6.713

Proof oflTheorem 6.7]3o0r * = p. We constructAl solving SIS, ym on the aver-
age from an impersonataf = (CV, CP) which succeeds impersonation under
concurrent attack with non-negligible probabiliéy Notice that the protocol is
witness-indistinguishable since we set> 2(1 + 6)nlogq andLNIC = Comy is
statistically-hiding and computationally-binding commitment scheme.

For the clarity, we write the transcript of interaction leyrt, ch, rsp, deq. Since
the protocol is parallelized, eacmt, ch, andrspis an ordered list which contains
t elements. For examplemt= (cmt, ..., cmt).

Given A, A chooses a random secret keg S(m, w) and computesl = Ae.
Using the secret key, it can simulate the prover oracle perfefithyinsCV on input
(A,u) and obtains a state f@P. A feeds the state t6P and acts as a legitimate
verifier. Receiving commitmentsmt, A chooses three challengels®, ch®, and
ch® from {1,2,3}' uniformly at random. Rewinding with three challenges,
obtains three transcriptsrfit ch®, rsp®, ded") for i = 1,2, 3 as the results of the
interactions.

By the Heavy Row LemmaQ094, the probability that alided” are 1 is at
least €/2)3. Meanwhile, we have

Pr[3j e [t] : {ch, ch®, chi¥) = 1,2,3)] = 1- (7/9)

by a simple calculation, whereh® is randomly chosen frorfd, 2, 3}!. Thus the
probability that#A has three transcriptsiit ch®, rsp®, ded”) fori = 1, 2,3 such
thatded” = 1 for alli, and{ch{®), ch{®), ch{®)} = {1, 2,3} for somej € [t] is at least
(e/2)° - (7/9)t, which is non-negligible sinceis non-negligible and = w(logn).

We next show howA obtains a secret key or finds a collision of the hash
functions in the string commitment scheme by using three good transcripts. As-
sume thatA has three transcriptstit?), ch®, rsp®, ded") for i = 1,2, 3 such that
cmtd = cmf@ = cmt®), ded) = 1 for all i, and{chgl),chgz),ch(f)} = {1,2,3) for

somej € [t]. Without loss of generality, we assume t D) =i, We parseas ?)
as in Step V2. We have following equations (We oirfibr simplification):

c1 = Coma(g, Ay - u;p¥) = Coma(y, Az ),

¢z = Coma(x;pi) — Com(u(2i)

e =Comaw+xip) = Coma(6(y):p).

w e S(mw).

If there exists a distinct pair of arguments@dma, A violates the computational-
binding property o£NIC and obtains a collision fdra and, thus, solves S}§, |-
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6.7. THE KAWACHI-TANAKA-XAGAWA IDENTIFICATION SCHEME

Next, we suppose that there exist no distinct pairs of the argumesrof.
Let 7 denote the inverse permutationdaf From the first equation, we hawe® =
¢ = . Thus, we obtairy = n(w + x) from the third equation. Combining it with
the first equation, we havkz = A(r(w) + 7(x)) — u. Sincez = ¢~%(x) = n(x) from
the second equation, we obtairn= A - r(w). Sincew € S(m, w), sox(w) also is in
S(m,w). Therefore,A setse’ := m(w).

We now have to show that # ewith probability at least 2. By[Lemma 6.7.4
there must be another secret lecorresponding ta with overwhelming proba-
bility. Recall that the protocol is statistically witness indistinguishable. Hefse,
view is independent afA’s choice ofe with overwhelming probability. Thus we
havee # e with probability at least 122 — negl(n). In this caseA outputse — €
and solves SIg, \m m]

We note that the above proof is extended into multi-user settings as in the proof
of Lyubashevsky|llyu084.

We next show the proof for sequential composition. We will estimate the lower
bound of the case where the adversary can answer the three challenge.

Proof ofTheorem 6.71%r = = s. We note that the proof for the sequential com-
position is also very similar to the ones of Steitd9¢ and Pointcheval and
PoupardPP03.

Assume that there exists a polynomial-time impersonattitat impersonates
the prover with probability. We construct the polynomial-time algorithiG out-
putting three transcriptsint ch®, rsp®, ded”) such thach® = i andded” = 1
fori = 1,2, 3 with non-negligible probability. The algorithm yields an adversary
A which violates the binding property @NIC or the collision-resistance property
of hp as in the previous proof.

We describe the algorithi¥(. On input A, K chooses the random tapeof
the impersonatof and its own random tape for the learning phase. Using them,
K terminate the setup and learning phases and obtains the st&tP.fadext, it
runsCP with several rewinds. Ldtdenote the random challenge of the legitimate
verifier that is identified with the challen@®= (chy, ..., ch) € {0, 1, 2}'. Consider
the execution tre@ (w), corresponding to all acceptédwith a fixedw. K finds
a node of the tree which has three sons by (1) chbasgformly at random, (2)
checkl contains a node with three sons by rewinding the prover (3) output three
transcripts on the three sons. This yielddifes of the executions of the basic
protocol and thus< runs in polynomial time of.

We next estimate the probability th@€ correctly outputs three valid tran-
scripts. Let us denote b$ the set of the pairsd, ) which lead to acceptance.
Hence, we have that Bij[(w,1) € S] = € = (2/3)' + €. Next, we define the
setQ = {w | Pr[(w,1) € S] > (2/3) + €/2}. A standard argument shows that
Pr.Jw e Q] = €/2and P2 | S] > €' /2¢. Assume in the following that the event
Q occurs.

We denote byn; the number of the nodes at the depth O,...,t of the tree
T(w). We know thaing = 1 andn; = 2!+ 3'¢’/2, becausey/3* = Pri[(w,1) € S] >
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(2/3) + € /2. So, we have that

n|+1 t 6/ t EI t 6/ t
:—> — > — —- —
n 0_ 2 3_(1 2) 2+2 3.

By taking the logarithm of the inequation and using the convexity of the logarithm,
we obtain that

=1

':l

-1
Nis1 € e € 3
iZ(;Iog o 2(1—5)-Iogzt+§-IogS*zt(IogZ+EIogE).

Therefore, there exists< t such that

’ ’

Ni+1 ¢r _ ¢ € ogl)s2. (14 €
o > 2(3/2) 2exp( -log = ) (1+2 Iogz)zz (1+ 5).
Let f; andt; denote the number of nodes at depitith exactly 3 sons and that with
at most 2 sons, respectively: We have that

n = fi + ti andni.1 < 3f + 2t = fi + 2n;.

Therefore, for the abovie we obtain that 2 fi/nj > nj.1/ni2 + 2¢’/5. Thus, so,
with probability greater thane?/5, the path contains a node with 3 sons.
This shows that, with probability greater the@a’ /2¢)(2¢' /5) = €'?/5, K finds
a node with 3 sons.
i

6.7.3 The Cycligldeal Version

We obtain the ID schem&t- IDg/IL by combining the above setup and key-
generation algorithms and the string commitment scheme with Stern’s scheme as
in One can prove the securities of the schemes in the same manner
to the proofs ofThearem 6.713 For simplicity, we only considefr = x" + 1 with

n= 2k

Theorem 6.7.5.Letm, g, andw be polynomially bounded functionsmguch that
m > 4logq, g is a prime withq = 3 (mod 8) andq"/ |S(mn w)| is negligible in
n. Then, iff-SIS;, ; is hard on average, the ID scherSe D¢, , is concurrently
secure.

In addition, letm = m(n), g = q(n), andw = w(n) be polynomially bounded
functions such thag > 6mn¥/2logn, andq”/ |S(mn w)| is negligible inn. Then for
y = 72mnlog? n, if f- SVP} is hard in the worst case then the ID schegtdD
is concurrently secure.

C/IL,*

Proof Sketch Notice that, by the hypothesid|.NIC is statistically-hiding and
computationally-binding under the assumption mqsus;;jml is hard on average.
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6.8. THE LYUBASHEVSKY ID SCHEME -2

As in the proofs ofTheorem 6.7J3we need to show that if there exists an
impersonatoZ’ which succeeds impersonation under concurrent attack with non-
negligible probabilitye, there existsA that finds a collisioné;, e») for Hz(f, g, m)
or violates the computational binding iNIC. The proofs are indeed the same as
the proofs ofTheorem 6.7J&nd we omit them. i

6.8 The Lyubashevsky ID Scheme -2

The scheme is can be interpreted as a parallel compositiag08f with a hash
family H(x" + 1,9, m).

Recall the the Schnorr protoc@¢h9]. By extending the challenge set from
{0, 1} to [0, C — 1], the soundness is reduced ttClrather than 12. Lyubashevsky
also extending the challenge set frqM 1} to {0, 1}", because the ideal-lattice-
based hash functions & 4-linear;

hs(cod+7) = > a@(coa+r)=ce ) a®a+ ) aor =cohs®+ha().
i i i
See the protocol description.

6.8.1 Description
Let us fixf = X" + 1 in the following.

Scheme 6.8.1Ly09 [Lyu09]). All of the participants agree with the parameters
m = m(n), q = q(n), o = o(n), and« = «x(n) and the following set®, De, Dy, D¢,
andG;

e D={ge R Yo < mnox},

e De={ge R lUl. <0},

e Dr = {0 € R, I8l < mnox},

e Dc={g€Rg: 0l <«},and

e G={Qe an?q 0l < Mok — ok}

Setup(1"): The setup algorithm, given"loutputs a random row vect@r «
Rr

KeyGen(a): The key-generation algorithm, given the public parameier
chooses a random column vect®re De and computes! « hz(€) € Req.
It outputs pk, sK = (u, &).

P = (P1,P2), V = (V1,V2): The common inputs aré andu. Prover’s auxiliary
input isé. They interact as follows:
Step P1: Pick a randont « D; and send/ « hx(F).
Step V1. Send a random challenge— Dc.

Step P2: Computez «— c® é+ F. If Ze G™, then send it to the verifier.
Otherwise, send. and abort the protocol.
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Step V2: Receivingz, accepts ifze Gandhy(2) =u®c+y.

It is obvious that, conditioned on that the prover does not abort, the honest
prover is always accepted. He showed that the followings and proved the security
by combining them.

1. The completeness error is at most 1/e, that is, Pgy[dec= 1 : (tr,deg «
Run[P(A,u,e) & V(A,U)]] > 1/e

2. The protocol P, V) is perfectly witness indistinguishable.
3. PréHRfmq’éﬁDgﬂ[H € € DT\, hs(€) = hs(¢)] > 1 - negl(n).

4. If we know é such thathz(€) = u and there is an adversary answering to two
challenge; andc; after committingy, then we can retrieve a collision bf.

Theorem 6.8.2([Lyu09)). Letf = x" + 1. The schemé&y09-ID is concurrently

secure iff-SIS;f’W with 8 = 2(mn-1)o« is hard on average. In particular, let be

a constant and let(n) = ©(log® n). Then the scheme is securé-BVP;}’ is hard
in the worst case, where= O(n?).

The first and third conditions are satisfied by careful choices of the parameters.
The second partis complex and segJ09]. The fourth part is almost obvious. Let
(y,c1, 21) and {, co, 20) be two transcripts which lead acceptance suchahatc,.

Then, we havéy(Z) = ¢ ® hy(€) + y andhy(Z; — ¢1 ® €) = hy(Z — ¢, ® €). Thus,
(z1—-C1®8 2 —c,®€) seems a collision fdny and both are ib. (We need to show
that they difers but we omit it.) For the details of the parameters and the proofs,
see the original papekyu09].

The ID scheme has completeness errer Il/e if we carefully choose the pa-
rameters. Hence, this protocol should be composed in parallel to reduce the com-
pleteness error toegl(n). In order to decrease the communication cost, one can use
the hash-based commitmet¢-), whereH is any collision-resistant hash function.

6.9 Summary

We have reviewed several ID scheme based on lattice and ideal lattice problems
and their security. As a summary,

The MV protocol: The variants based on the MV protocol requires the mild
assumption, SIVB(nl.S) is hard in the worst case. In addition, the one of variants
directly bears an identity-based identification scheme [Gwepter ¥

The KTX ID scheme: The assumption is the weakest among those in other
schemes. The one weak point is a long transcript. The scheme requires a per-
mutation over in] and thus, the communication cost is most expensive.
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Lattice-based ID schemes, A1, A € Zg™)

Par.| Public key| Relation v in GapSVE, | Comm. cost Errors
MV-ID,  [MVO3 — |Ao, A1 |Age=0orAie=0 |O(nt®) t-O(n) 1-sided
MV-IDE; | A |u Ae=u O(n*®) t- O(n) 1-sided
Ly08-IDg_p [Lyu08g | (A) | Au Ae=u O(n?) t- O(n) 2-sided
St-1DgLp A |u Ae = u andwy (e) = w | O(n) t- O(n) 1-sided

Ideal-Lattice-based ID schemds< x" + 1 andag, &, & € Rfm )

Par.| Public key| Relation yinf-SVPy | Comm. cost Errors
MV-ID{, [MVO3] |- |&0.& 28=00r5eé=0 O(n'®) t-O(n) 1-sided
MV-IDE}, o a |u a=u O(nt5) t- O(n) 1-sided
Ly08-IDc/ip (3 |au aé=u O(n?) t-O(n) 2-sided
St-1Dc/iLp a |u 28 = uandwy (& = w | O(n) t- O(n) 1-sided
Ly09-I1D, (3 |au a8 =u O(n?) t- O(n) 2-sided

Table 6.1: Comparisons among ID schemes. A secretdteg e € D,,. The factor
n denotes the security parameter. Assume that the protocols are repigaiesiin
parallel for reducing errors. INV-ID, we sets = yY/mands = y/mnwith respect
toL = GL andC/IL, respectively.

The Lyubashevsky ID schemes: The assumption is strongest one. However, it
attracts us by its low communication cost. In addition, the vatig@®-ID yields a
simple signature scheme by applying the Fiat—-Shamir transfornCBae
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|dentity-based Identification

In this chapter, we show that the combination of the Micciancio-Vadhan identifica-
tion with lattice-based signatureg@napter Iflyields concurrently secure identity-
based identification scheme in the random oracle model.

Organization: In[Section 7.lwe review a model of identity-based identification
(IBI) schemes and security notions of them[3ection 7.Rwe construct IBls and
prove their security.

7.1 Definitions

7.1.1 Model of Identity-Based Identification Schemes

Identity-based cryptosystems (precisely, encryption and signature schemes) are
proposed by ShamiiSha8%. First, a master generates the public parameters and
corresponding master’s secret key. Each user has no public key but identity. They
use an identity instead of public key in the cryptosystem. Notice that anyone of
user obtains its secret key from the master, called as user’s secret key.
On identity-based identification, the prover has a user secret key as its auxiliary
input and the verifier is given the public parameter and prover’s identity as input.
We adopt the definition by Bellare, Namprempre, and Nel@MN09]. For-
mally, an identity-based identification scheif is a quadruplet of algorithms
(Setup, Ext, P, V).

Setup(1"): A setup algorithm, given the security parametér dutputs public
parameterparamand a master secret kaysk
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Ext(mskid): An extraction algorithm, givemskand an identityid, outputs a
secret keysky for the identityid.

P(paramid, skq), V(paramid): (P, V) is an interactive protocol. A prover al-
gorithm P takesparam id, andskq as inputs. A verifier algorithnv takes
paramandid as inputs. At the end of interactioN, outputs O (reject) or 1
(accept).

We require the natural correctness condition; For payam generated by
Setup(1") andskq generated b¥xt(mskid), the decision oi/(paramid) inter-
acting withP(paramid, skq) is 1 with probability 1. That is, for anig

(param msk « Setup(1");
Pridec=1: skg <« Ext(mskid);
(tr,ded « Run[P(paramid, skq) < V(paramid)];

Il
=

An IBI schemelBI is said to becanonicalif the protocol is 3-move and public
coin as ifSection 6.2

7.1.2 Security Notions

The definition of security notions are almost identical to these of ID schemes. We
describe the formal definition as follows. Consider the experi ';p;tk(n)
between the challenge? and the impersonatad = (CV,CP), where atk €

{pa aaca.

Experiment Expiglp;tk(n):

Setup Phase:The challenge€ obtains param msk « Setup(1"). Next,
C setsHU,CU, TU « 0 andPS « 0, whereHU, CU, TU and PS de-
notes the set of honest users, corrupted users, target users, and provers’
sessions, respectively. The imperson&@uris given the security param-
eter T, the system parametparam

Learning Phase: The impersonatoiCV can query to the oraclebur,
ExtraAcT, andProv.

e The oraclenir receives an identitid. If id €e HU U CU U TU then
return L. Otherwise, it obtainsky « Ext(mskid), stores it into
usKid], and addsd to HU. Finally, return 1 to the adversary.

e The oracleExTtracT receives an identitid. If id ¢ HU then returnt.
Else, it addsd to CU, deletesd from HU, and returnsisKid] to the
adversary.

e The oracleProv receives inputsd, s, Mi,, wheres denotes the ses-
sion identifier. This oracle changes its behavior in three attacks.

— If atk = pa, it obtains tf,ded « Run[P(paramid,skqy) <
V(paramid)] and returnstf, deg to the adversary.
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— If atk = aa, it runs as follows: Ifd ¢ HU then returnL. If
(id, s) ¢ PSthen it setS « {(id, 9)}, picks a random coip,
and sets a state of the prowsg[s] « (param skq,p). Next, it
obtains Mout, Stp[id, §]) < P(Min, stp[id, g]). It returnsMgyt.

— If atk = ca, it runs as follows: Ififl, s) ¢ PS then it addsil, s)
to PS (that is,PS «— PSu{(id, s)}), picks a random coip, and
sets a state of the provet[id, 5| « (paramskg,p). Next, it
obtains Mout, Stp[id, §]) « P(Min, stp[id, 9]). It returnsMgyt.

At the end of the phas@V outputs {d*, stcp).

Challenge Phase:Suppose tha€ receives id*, sicp) from CV. If id* ¢
HU, thenC outputs 0 and halts. Else, the challengeaddsid* to TU,
deletesid* from HU, and givesstcp to CP. Finally, the challenger ob-
tains ¢r,deq « Run[CP(stcp)NmExm™ATPROV. (s y/(paramid)] and re-
turnsdec

Notice that if atk= pa the adversary could learn only transcripts between the
legitimate prover and verifier. If atk aa, the adversary could interact with the
legitimate prover sequentially and has the power to abort the session. 3f @k
the adversary interact with the legitimate prover concurrently by indicating each
interaction with session identifier.

Definition 7.1.1. LetIBI = (Setup, Extract, P, V) be an IBl schemedA = (CV, CP)
an impersonator, and a security parameter. We define the advantagéiais
Adv'l'gl‘?;tk(n) = Pr[Exp'Igf;tk(n) =1|. We say thatBl is secure against imper-
sonation under passive, active, and concurrent attad«:tvigp;tk(-) is negligible
for every polynomial-time adversarfl where atk= pa aa ca, respectively.

7.2 Identity-based Identification Schemes

An intuitive explanation of a well-known strategy to construct an IBI scheme is
as follows: A master generategk(sk) which is a verification and a signing keys

of a signature scheme. It publishdsand keepsk secret. If a user queries with

id, then the master returns a signatarenid. As identification, the user proves
possession ofr using some protocol. We note that Bellare, Namprempre, and
Neven BNNO9] also gave the general construction of IBIs from any identification
scheme and any signature scheme. For more information on generic constructions,
see [KHO04, BNNQO9, YCW*07].

They are several identity-based identification schemes based on number the-
oretic problems. However, we know a few IBI schemes based on the com-
binatorial problems with security proofs. The one is that by Cayrel, Gaborit,
Galindo, and GiraultCGDGO0Yg (see alsolCGGOY) based on the coding prob-
lems, which consists of the Courtois—Finiasz—Sendrier signature scigiF&®]
and Stern’s ID schemédSéction 6.B. The other is one by Stehl Steinfeld,
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Tanaka, and XagawéSBETX09, which is obtained by combining the Gentry—
Peikert-Vaikuntanathan (GPV) signature sche@BY0§ (Secfion IT.Band the
Micciancio—Vadhan (MV) protocol3ection 6.1

We now give a brief review of the GPV signature scheme (For the details,
Chapter I[andSection 11.R Roughly speaking, the public key 5 ¢ Z[‘fm and
the secret key is a short ba3iss Z™™ of a latticeA = Aé(A) such that|T|| < L.

If such basis is known, one can samjilg s; with s = L - w(+/logn) and for
anyt € R™ (segChapter I This indicates the trapdodr allows us to sample
e « Dj s conditioned oru = ha(€). Notice that the samplehas a norm at most
svmwith overwhelming probability.

We follow the above general strategy to construct lattice-based IBls: Master’s
key pair is gk = A,sk = T). A signature ord is o = e such thatAe = H(id)
(modqg) ande € D, = {e € Z™ | ||| < svym}. We then use the MV protocol
for a proof of signature possession. Since the signature schemes are secure under
the worst-case hardness of lattice problems and the MV protocol is witness indis-
tinguishable and proof-of-knowledge, the IBI schemes also enjoy the concurrent
security in the random oracle model.

Scheme 7.2.1LIBI [SSTX09Y). SeeGPV-FDH = (Setup, KeyGen, Sign, Ver) in
Let (P, V) be the prover and the verifier in the scheme(, . Let
H: {01} — Zg be the random oracle which is used@PV-FDH. The IBI
scheme.IBI = (Setup’, Ext’, P/, V’) is defined as follows:

Setup’(1M): Given the security parameter',1the setup algorithm obtains
(A, T) « KeyGen(1"), whereA is almost uniformly distributed oveLg ™
andT is a short basis oAz (A) such thaf|T|| < L for someL. It outputs
(parammsRk = (A, (A, T)).

Ext’((A,T),id): Given an identityid, it outputse « Sign((A, T), id) such that
|lell is short (e < d2 = sym) and Ae = H(id) modg.

P’ and V’: The common inputs ar@ andid. Prover’s auxiliary input i®. Let
us defineu = H(id) € Zg. They are the same &andV with parameted, in
the MV protocol.

Theorem 7.2.2. The obtained IBI scheme is concurrently secure in the random
oracle model |SIS§’m’O(\/md2) is hard on the average, whete = L vm-w(+/logn).

The GPV signature schem&PV0{ with the Alwen—Peikert construction in
[Chapter I]yields that. = O(+/nlogq) whenm = (5+3§)nlogq for some constant
6 > 0. Thus, the security of the IBI scheme is reduced to SIfPy = O(n?).

In addition, if we replace the GPV signature scheme with the Bonsai signature
schemes ifGecfion 11.7the IBI schemes (and hierarchy IBI scheme) in the stan-
dard model are obtained. If we employ the ideal-lattice-based signature schemes,
we also obtain the ideal-lattice-based IBI (and hierarchy IBI) schemes which are
concurrently secure.
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Organization: [Section 8.Jlintroduces rind identificatioriSection 8.ldefines a
model and security notions of rind identification scherf@ciion 8.Rjives details
of the Kawachi—Tanaka—Xagawa ring identification schemes.

8.1 Introduction

Dodis, Kiayias, Nicolosi, and Shoup introduced new identification, under the
name ad hoc anonymous identification (AIMKNSO04], which are identification
versions of ring signatufe We call this new identification “ring identification
scheme” rather than “ad hoc anonymous identification scheme” for simplification
of the name and stress of the relation to ring signature.

An RID scheme allows a user to anonymously provgheismembership in a
ring, which is the set of public keys, if and only if the user is an actual member
of the ring. We use the term “ring” instead of “group,” since we want to stress
that the ring is formed in an ad hoc fashion, without help of the group manager.
Hence, we then assume that every user registefisenipublic key to the public
key infrastructure.

RID schemes: By taking OR ofl statementd)SDCPY94, we can straightfor-
wardly obtain arMV{;, -based RID scheme,whose security is based on the worst-
case hardness of lattice problem. The prover and the verifier have the common
input pky, ..., plk. The prover convinces the verifier that/sige has a secret key
corresponding to one of public keys;.

lindeed, applying the Fiat-Shamir transform to their AID schemes, we can obtain ring signature
schemes. See the original pappKINS04]
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However, this simple modification requires a large overhead cost involving the
size of the ring. Let be the number of the members in the ring arttie security
parameter. The protocol is run intimes in parallel to reduce the errors. The
communication costs of thdV(, -based scheme t&- O(n). The size of the ring is
| - O(n?) in the modified versions aiVg, .

On RID schemes, the KTX ring identification schemi&€$X-RIDg_. by
Kawachi et al.[KTX08] require manyectorsproportional to the member of the
ring, while theMV{, -based scheme requires mangtricesproportional to the size
of the group (sefable 6.3. Additionally, the communication cost &TX-RIDg_
ist- O(n + 1), while those in theuV, -based igl - O(n).

8.2 Definitions

8.2.1 Model of Ring Identification Schemes

An RID scheme is a sextuplet of algorithmsRID =
(Setup, Reg, RPKC,RSKC, P, V):

Setup(1"): A setup algorithm, given the security paramet®r dutputs public
parameterparam

Reg(parami): A key-generation algorithm, giveparamand user identity,
outputs a pair of a public key and a secret kek,(sk). This models the key
registration procedure.

RPKC(param R = (pk,,...,pk,)): A ring public-key construction algorithm,
given the public parameteparam a ring of public keyR = (pk;,, ..., pk,),
outputs a ring public keypk.

RSKC(param R = (pk,,...,pk,).sk,): A ring secret-key construction algo-
rithm, givenparam R = (pk;, ..., pk;,), and one of corresponding secret key
sk,, outputs a ring secret kegk.

P(param rpk, rsk), V(param rpk): (P,V) is an interactive protocol. A prover
algorithmP takesparam rpk, andrsk as inputs. A verifier algorithrv' takes
paramandrpk as inputs. At the end of interactioW, outputs O (reject) or 1
(accept).

Correctness: As in the definition of ID schemes, we require the natural cor-

.....

..........

decision ofV(param rpk) interacting withP(param rpk, rsk) is 1 with probabil-
ity 1. That is, for any polynomiaQ = Q(n) and{iy,...,ij} € {1,2,...,Q}, and

84



8.2. DEFINITIONS

param« Setup(1");
(pk;, sk) < Reg(parami) fori=1,...,Q;
Pr{dec=1: rpk « RPKC(param {pki}i=i,..i); =1

,,,,,

(tr,deqg « Run[P(param rpk, rsk) « V(param rpk)];

8.2.2 Security Notions

There are two goals for security of RID schemes: Security against impersonation
and anonymity.

Dodis et al. formally defined security against impersonation under passive at-
tack. They mentioned the definition of security against impersonation under con-
current attack. However, they did not give the formal definition (£€NS04,
Section 3.2]). Thus, we define the security notion with respect to concurrent at-
tack. In the setting of chosen-group attack, the adversary could force the prover to
prove the membership in an arbitrary group if the prover is indeed a member of the
group. Additionally, concurrent attack allows the cheating verifier to interact with
the clones of any provers. Also, they allow the cheating prover to interact with the
clones of provers, but prohibit it from interacting with the target provers. We say
RID is secure against impersonation under concurrent chosen-group attack, if any
polynomial-time adversary cannot impersonate the legitimate prover in the above
settings.

The security notion, anonymity against full key exposure, captures the property
that an adversary cannot distinguish two transcripts even if the adversary has the
secret keys of all the members. We & is anonymous against full key exposure
if any polynomial-time adversary cannot distinguish two provers with a common
set of public keys even though the adversary generates all keys of the set.

Security against impersonation: In the setting of chosen-group attack, the ad-
versary could force the prover to prove the membership in an arbitrary ring if the
prover is indeed a member of the ring. Additionally, concurrent attack allows the
cheating verifier to interact with the clones of any provers. Also, they allow the
cheating prover to interact with the clones of provers, but prohibit it from inter-
acting with anyone of the target provers. Notice that this condition prevents the
adversary a simple Man-in-the-Middle attack.

We describe the formal definition of the security as follows. Consider the fol-
lowing experimenExp P 9% n) between the challenger and the impersonator

RID, I
I = (CV,CP), where atke {pa aaca.

Experiment Expigl‘g';?'aﬂin):

Setup Phase:The challenger obtaingaram < Setup(1") and initializes
HU,CU,TU, PS « 0, whereHU, CU, andTU denote the sets of hon-
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est users, corrupted users, and target users, respectivelly Sadenotes
the set of prover’s sessions. The imperson&dgris given the security
parameter 1and the system parametgaram

Learning Phase: The impersonato€V can query to the three oraclesr,
Corr, andProv.

e The oracldnir receives input. If i €e HU U CU U TU then returns
1. Otherwise, it obtaingi;, sk) « Reg(parami;r;), adds to HU,
and providesA with pk.

e The oracleCorr receives input. If i ¢ HU \ TU then returnsL.
Otherwise, it addsto CU, deletes in HU, and returns; to A.

e The oracleProv receives some inputs. This oracle changes its behav-
ior in three attacks.

—If atk = pa, it receives inputR = (pk,,...,pk) and
ik. If pk, ¢ R then returnsL. (The public keys inR
need not to be registered.) If the check is passed, it obtains
rpk « RPKC(param R) andrsk « RSKC(param R, sk, ), and
(tr,deg « Run[P(paramrpk,rsk) < V(paramrpk)]. It re-
turns ¢r, deq to the adversary.

— If atk = aa, it receives input® = (pk,,...,pk), ik, s, and
Min. If pk, ¢ Rorix ¢ HU\ TU then returnsL. (The
public keys inR need not to be registered.) If the checks
are passed, it obtaingpk < RPKC(paramR) andrsk «
RSKC(paramR,sk,). If (Rix,S) ¢ PS then it setsPS «
{(R ik, S)} to PS, picks a random coip, and sets a state of the
proverstp[(R ik, S)] < (param R rpk, rsk, sk, ,p). Next, it ob-
tains Mout, Sto[(R. ik, S)]) < P(Min, sto[(R, ik, 5)]). Finally, it
returnsMoyt.

— Ifatk = ca, it receives inputR = (pk,...,pk,), i, s, andMi,.
If pk, ¢ Rorix ¢ HU \ TU then returnsL. (The public keys
in R need not to be registered.) If the checks are passed, it ob-
tainsrpk « RPKC(param R) andrsk « RSKC(param R, sk, ).
If (Rik,s) ¢ PSthen it adds R ik, s) to PS (PS « PSU
{(R ik, 9)}), picks a random coip, and sets a state of the prover
st[(Rik. 5)] « (paramR rpk,rsk sk,,p). Next, it obtains
(Mous Stp[(R, ik, 9)]) « P(Min, stp[(R, ik, 9)]). Finally, it returns
Mout.

Challenge Phase:CV outputs a set of public key& = (pk,, ..., pk;) and
step. If the indexes of the key§i1,...,ij} ¢ HU then the challenger
outputs 0 and halts. Otherwise, the challenger $éis « {i4,...,i}
and givesstcp to CP. CP can query to the oraclelsur, Corr, and
Prov as in the learning phase. Finally, the challenger obtdmedd «
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Run[CP(stcp)N™CorR-PrRov. 5 \/(param Ry)] and outputslec

Definition 8.2.1. Let RID be an RID scheme and = (CV, CP) an impersonator.
Let n be a security parameter. The advantagé&ioh attackingRID is defined by

Advgr:g:;?'atk(n) = Pr[Expng:;?'atk(n) = 1].

We say thaRID is secure against impersonation under pagsotivgconcurrent

. |mp-cg.at . . . . .
chosen-group attack #‘dVRID,f[ k(-) is n_egllglble for every polynomial-time ad-
versaryA, where atk= pa aa ca, respectively.

Anonymity against full key exposure: Anonymity against full key exposure for
an RID schemeRID is defined by using the following experimelﬁkpgl‘gyke(n)
between a challenger and adversa#ty

- fke (-
Experiment EXpgp (n):

Setup Phase:The challenger runs the algorith8etup with input 1" and
obtainsparam The adversaryA is given the system paramefgaram

Challenge Phase: A requests a challenge by sending to the challenger the
values (pk,, sk,), (pk,,sk,), R). Here the set of public keyR contains
pk, andpk , and Pk, sk,) and Pk ,sk,) are valid key pairs. The chal-
lenger chooses a random bite {0, 1} and runs the protocol as a prover
who hassk,. (tr,b*) « Run[P(paramR, sk,) < A]. If b = b* the
challenger returns 1, otherwise returns 0.

Definition 8.2.2. Let RID be an RID schemed an adversary, and a security
parameter. The advantagefin attackingRID is defined by

1
AV (r) = |Pr{Expagtie(r) = 1] - 3.
We say thaRID has anonymity with full key exposureAfdv3S*e() is negligible
for every polynomial-timeA.

8.3 The Kawachi-Tanaka—Xagawa Ring Identification
Schemes

We review the Kawachi-Tanaka—Xagawa RID scheme based on GapSVP. First,
we sketch a basic idea for our construction: kebe a system parameter. Each
user has a secret key € S(m,w) and a public keyy; = Ag modg. In the RID
scheme, a group is specified by a set of public keys.(.,u;) of the members.

Letij| denote an-dimensional vector (0..,0,1,0,...,0) whosd-th elementis 1.

The prover in the group, who has a secret kgywants convinces the verifier that
he/'she knows thag’ := g o —ij; such that Au; ... u]e = 0andg € S(m, m/2).
Changing the parameters and using Stern’s protocol, the prover can convinces the
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verifier that hgshe ha®’ such that Au; ... uj]Je¢ = 0, the numbers of1l in€ is
m/2, and the numbers 6fl in € is 1. Additionally, we force the prover to prove
thate is in the forme’ = g o —ij;. To do so, Kawachi et al. divided a permutation
min Step P1 into two permutations.

Let 4 be a permutation oveni andn; be a permutation ovef][ For a per-
mutations over [m+ I], we denoter = np © 7y if

_( 1 2 ---.m )( m+1 m+2 - m+l )
T \mn@) @) --- an(Mm)) \m+m(1) m+a2) -0 m+m(l))°

For anyr, andn, we have £, 0 1) ™! = m 1 0 ;L. For anye, € Z™ ande, € Z, if
m = 1h © 7y thenn(en o &) = mn(en) o mi(&).

8.3.1 Description

We here construct an RID scheit€X-RIDg . based on GapSVP. Similarly to the

ID schemeSt-IDg , in[Section 6.)7the protocol is repeatelt= w(logn) times in
parallel to achieve exponentially small soundness error. As in the previous section,
we hide randomness Doma.

Scheme 8.3.1KTX-RIDgp). All the participants agree with the parametars-

m(n), q = q(n), andw = w(n).

Setup(1"): The same aSetup of the protocol inSection 6.7

Reg(A,i): The same akG of the protocol irSection 6.7

RPKC(A,R = (Ui,,...,u;)): OutputA’ =[Auj, ... u;] € ng(m*').

RSKC(A,R = (Ui, ..., Uu;),8,): Outpute =@, o—ixs €{0,1}™x -S(I,1).

P andV: The common inputs aréd and {i1,...,u;). The prover's auxiliary
inputise for somei € [I]. Let A’ :=[Auz ... u]ande:= g o —ij;. We write
Cominstead ofComn for ease of notation. Formally, they interact as follows:
Step P1: Choose random permutations over [m| and m; over [I]. Let

m = mh O ;. Choose a random vectore Z[{‘*'. Send commitmentsy, Cy,
andcz as
e C = COTT(ﬂ'h,?Tt, A’I’),
e Cz = Com(xn(r)),
e c3 = Con(n(e+r)).
Step V1 Send a random challengb € {1, 2, 3} to P.
Step P2
e If ch=1, revealc, andcs. Sendw = z(€) andx = x(r).
e If ch= 2, revealc; andc,. Sendpy, = mh, ¢¢ = 1y, andy = e+ r.
e If ch= 3, revealc; andcs. Sendyy, = m, Yy = m;, andz =r.
Step V2
e If ch= 1, check that, = Com(x), c3 = Comw + X), andw is in the
form wh o —ij) for somej andwy, € S(m, w).
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e If ch = 2, check that; = Com(¢n, ¢, A’Y) andcz = Com{((¢h ©
$o)()).

e If ch = 3, check that; = Com(yn, ¥, A’) andc, = Com((yh ©
¥1)(2).

Outputdec= 1 if all checks are passed, otherwise outghex= 0.

8.3.2 Security Proof
The security of the above protocol is stated as follows.

Theorem 8.3.2.Letm = m(n) andq = q(n) be polynomially bounded functions
satisfying the conditions thah > 2(1 + §)nlogq for some constani > 0 and
g"/1S(m, w)| is negligible inn. Assume that there exists an impersonatbthat
succeeds impersonation under concurrent chosen-group attack with non-negligible
probability. Then there exists a probabilistic polynomial-time algoritirthat

solvesSISém i

CombiningTheorem 8.3)&vith[Theorem 2.4]9we obtain the following theorem.

Theorem 8.3.3. For any m(n) = ®(nlogn), there existg(n) = poly(n), w(n) =
w(logn), andy(n) = O(n+/logn) such thatq"/|S(m,w)| is negligible inn and

the above scheme is secure against impersonation under concurrent chosen-group
attack ifSIVP§ is hard in the worst case.

The statistical anonymity of the above scheme follows from witness indistinguisha-
bility of the protocol.

Proof ofTheorem 8.312We will construct A solving SIS, ym With non-
negligible probability by using an impersonatbiwhich succeeds impersonation
with non-negligible probability.

The algorithm®A, given inputA, feedsA to the impersonatar. In the experi-
ment, the impersonatdr will call Init, Corr, andProv. If I callsInit with input
i, thenA chooseg at random, computeg := Ag, and returnsy; to 7. A can
simulate the oracle€orr andProv, sinceA has the secret keg corresponding
to the public key;.

At the end of the experiment] will impersonate the one in a rinR =
(u1,...,u;). Rewinding? three times,A obtains three valid transcripts as in the
previous proof.

We next show howA obtains a secret key or finding a collision of the hash
functions in the string commitment scheme by using three good transcripts. As-
sume thatA has three transcriptsiit?), ch®, rsp®, ded?) for i = 1,2, 3 such that
cmt® = cmt? = cmt®, ded) = 1 for alli, and{chgl),chgz),ch(jg)} = {1,2,3} for

somej € [t]. Without loss of generality, we assume tkthf) =i. We parsersp?)
as in Step V2. From the above argument, we have four equations as follows (We
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omit j for simplification):

¢t = Coma(gn, ¢t’ Ay, p?) = Coma(yn, v, A’z p1Y),
¢ = Coma(x;pSM) = Coma((¥n © ¥)(2); p 3))

s =Comaw+xp5") = Coma((¢n©d)(Y):p).
W = Wy o —ik for somek andw, € S(m,w).

If there exists a distinct pair of arguments@bmy, A obtains a collision forA
and solves SIg, .

Let us assume that there exist no distinct pairs.alled an inverse permutation
of ¢n © ¢. From the first equation, we obtain the equationt = ¢n © ¢ =
Wwh O Yr. Combining with the third equation, we haye= n(w + x). Thus, we have
A’z = A’(n(w) + n(x)). From the second equation,= 7(X). Hence, we obtain
A’ -(w) = 0. We haver = Oy for some permutations, ands; over [m] and [I]
respectively, since is inverse ofpy ® ¢¢. Thus, we have\’ (mn(Wh) o mre(—ik;)) = 0
That isurw = Amm(wh). By using same argument in the previous proof, we
have thatrn(Wh) # €k With probability at least 12 — negl(n). So, A outputs
Z = €y,(x) — mh(Wh) as a solution for Sl§m N

mi

8.3.3 The Cycligldeal version

Changing the key-generation algorithm, we have a lightweight version
KTX-RIDc,.. For simplicity, we fixf = x2 + 1.

Theorem 8.3.4.Letm, g, andw be polynomially bounded functionsmo§uch that
m> 4logq, gis a prime withq = 3 (mod 8) andq"/ |S(mn w)| is negligible inn.
Then, iff-SISél"’m1 is hard on average, the ID scherd&X-RID¢/._. is concurrently
secure.

In addition, letm = m(n), g = q(n), andw = w(n) be polynomially bounded
functions such thafj > 6mr¥/?logn, andq"/ |S(mn w)| is negligible inn. Then
for y = 72mnlog?n, if f-SVP} is hard in the worst case then the ID scheme
KTX-RID¢_ . iS concurrently secure.

sketch.We show that if there exists an impersonafowhich succeeds imperson-
ation under concurrent chosen-group attack with non-negligible probability, there
existsA that finds a collision%;, ) for hs.

The algorithmA, given inputa € Rfm feedsa to the impersonatof. In
the experiment, the impersonatbmwill caII Init, Corr, andProv. If I callsInit
with inputi, thenA choose® € S(mn w) at random, computas := hx(&), and
returnsu; to 7. A can correctly simulate the oracl€rr andProv, sinceA has
the secret ke corresponding to the public key.

At the end of the experiment] will impersonate the one of a ring =
(u1,...,u). Rewinding A three times, A obtains §p) # (S,p") such that
Coma(s,p) = Coma(S'; p’) or avectore = enog such that[Rg(@)uy ... uJe= 0,
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wherexy € {0, 1}™, & = —iy, for somek, ande, € S(mnw) as in the proofs of
[Theorem 6.7]J&andTheorem 8.312

In the former caseAl computesz # Z € {0,1}™ such thatConx(s;p) =
Rot(d)zandConmy(s’; p’) = Rok(a)Z. Hence, A outputs ¢ Z) as a collision for
hs.

In the latter case, we have R@) - , = ux. By the same argument as in the
proof of[Theorem 8.3]2we have thag, # e with probability at least 22. Hence,
A outputs &, &) as a collision foihy. |
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Interlude: Zero-Knowledge Protocols on
NTRU

As an interlude, we review zero-knowledge and proof-of-knowledge protocols for
NTRU by Xagawa and TanakXT09] which exploited Stern’s ID scheme. One is
for the relation on secret-key knowledge and the other for that on plaintext knowl-
edge. They are the first non-trivial constructions of these protocols for NTRU.
Additionally, the former directly yields an identification scheme based on NTRU.

Organization:  In[Section 9.1l we review background of the NTRU encryption
schemelSection 9.15yjives a brief review of the NTRU encryption scheme. We give

exiting relations between NTRU and lattice&Saction 9.B[Section 9.%4eviews the
Xagawa-Tanaka protocol for the basic relatidBgction 9.hgives a detail of ID
scheme obtained from the XT protoc@ection 9.icompares several ID schemes

based on combinatorial probleniSection 9.ligives some concluding remarks on
the protocol and the ID scheme.

9.1 Introduction

Background: In 1996, Hdfstein, Pipher, and Silverman proposed a public-
key encryption system, NTRUHPS9§ (the conference version is appeared in
ANTS Il [HPS98). The main attractions of this encryption scheme are fast key-
generation, encryption, and decryption, and compact sizes of keys. Other lattice-
based encryption schemes, such as the Ajtai—-Dwork cryptosy#€&87|, the

GGH cryptosystemiGGH97H, and the Regev cryptosysteniRdg03 [Reg09 do

not have all of these attractions. (§€bapter Ior the details of them.) Addi-
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tionally, it seems bearable against threat of quantum computers. After proposing
the scheme, they founded a company named NTRU Cryptosystems.

The proposers of NTRU have modified the parameters of the system. As
instantiations of NTRU, there are NTRU-199BRS98, NTRU-2001 HSO0(,
NTRU-2005HGSWO0%, NTRU-2007 HHGP*07], and NTRU-2008WHGH™08,
HHHGWOQY, where the last instantiation is in IEEE P136®12. There are sev-
eral attacks after the Coppersmith—Shamir attd€897. For chosen plaintext
attack, see Coppersmith and Shan@SR7j, Odlyzko’s meet-in-the-middle at-
tack [HGSWO03, and Howgrave-GrahanHGO7]. For chosen ciphertext attack,
see [JJOOHHHKO3, HGNP'03, IMRO6, [GNO7]. For the summary of the attacks,
see, e.g., Mol and Yun@Y08].

While approximately forty papers have dealt with NTRU, surprisingly, there
are noprotocolsexcept these for encryption or signature. For example, there are no
secure identification schemes based on the NTRU problems and proofs of plaintext
knowledge for NTRU. This contrasts with the situation that the number-theoretical
assumptions allow us to construct concurrent-secure identification schemes and
non-malleable proofs of plaintext knowledge for the RSA, Rabin, Paillier, and El-
Gamal encryption schemeisdt0d.

Techniques: The main idea of Xagawa and Tanaka09] is plugging the struc-
ture of NTRU into a variant of Stern’s protoc@ie96KTX08].

Kawachi, Tanaka, and Xagaw&TX08] observed that Stern’s protocol can
be used for the relations apary lattices. The relation is the set ofA((u),€) €
(g™ x Zg) x {0, 1}™ such thatAe = u (mod g) and the Hamming weight @is d
(sedSection 6.FandSection 6.J.

In addition, note that the well-known NTRU lattice is indegeary lat-
tice, which has a representatioxﬁ(A) = {e € Z" | Ae = 0 (modq)}
(seelCS97MROS]).

However, there are someflilculties to connect NTRU with the Stern’s proto-
col directly. In order to connect NTRU with the variant of Stern’s protocol, we
modify the structure of ad hoc anonymous identification schemes by Kawachi et
al. [KTXQ08]|, which introduced the permutation splitting technique in Stern’s proto-
col, rather than the identification scheme by them. By this modification, we pattern
a statistical-zero-knowledge and proof-of-knowledge argument for the generalized
relations, say, the set of polynomials,®, ), (X, u)) such thab@x +b®u = z
(mod x" — 1, q) andeachHamming weight of andu is dy anddy, respectively.
Then, we modify the protocols in order to employ the relations on secret-key
knowledge and plaintext knowledge tailored for each instantiation of NTRU.

Related works: It is well-known that the existence of one-way functions im-
plies computational-zero-knowledge proof systems for any NP-relation. How-
ever, this general proof system is leggaéent than the arguments by Xagawa and
TanakaKTQ9].
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In general, one has a simple challenge-and-response protocol for the relation
on secret-key knowledge: The verifier sends a random ciphertext to the prover,
and the prover answers the plaintext of the ciphertext. This simple protocol is
honest-verifier perfect zero knowledge for the relation on secret-key knowledge.
However, a malicious verifier can use this protocol as the decryption oracle. In
some instantiations of NTRU, this yields the universal bré&aX(083].

One can consider a protocol by combining the observations by Coppersmith
and Shamir mentioned above with statistical-zero-knowledge proof systems for
GapSVP and GapCVP by Micciancio and VadhdfvD3] (Secfion 6.3 This
combination might fit for our purpose, however, we cannot provide reasonable
analysis of it.

Recent studies on lattice-based cryptography gave several protocols for lattice
problems and cryptographic primitives based on the worst-case hardness of lattice
problems. There are statistical zero-knowledge proof systems for coGapSVP and
coGapCVP by Goldreich and Goldwasg&G30(, and ones with ficient prover
for GapSVP and GapCVP by Micciancio and Vadh&f/03]. Recently, Peikert
and Vaikuntanathan gave non-interactive statistical-zero-knowledge proof systems
with efficient prover for several lattice problenfBJ0§. Lyubashevskylllyu08a
Lyu09] (Secfion 6.kandSection 6.8 and Kawachi et al [KTX08] (Section 6.
proposed concurrently-secure lattice-based identification schemes. It will be an
interesting task to construct concurrently-secure ID scheme and non-interactive
zero-knowledge protocols for NTRU.

We next discuss the plaintext knowledge. The Xagawa—Tanaka proof-of-
knowledge arguments for the relations on plaintext knowledge are related to proof
of plaintext knowledge (PPK). Explicit formalization of PPK is due to Aumann and
Rabin (cited in KatzKat03). According to Katz[Kat03 Section 1.2], they gave a
generic solution for any public-key encryption scheme and their protocol is honest-
verifier zero knowledge, while the arguments are (cheating-verifier) statistical zero
knowledge.

There are many identification schemes based on the combinatorial prob-
lems; Shamir's schemé&ha89 based on the permuted kernel problem, Stern’s
scheme &te9¢ based on the syndrome decoding problem, and the scheme by
Pointcheval and Poupar@P03} based on the permuted perceptron problem, and
etc. Sectiorf9.8 compares the NTRU-based ID scheme and the identification
schemes mentioned above.

Finally, we report that we found an independent work by Gaborit and Gi-
rault [GGO7. They proposed light-weight variants of Stern’s identification scheme
by using NTRU-like codes, double circulant linear codes and assumed the hard-
ness of the syndrome decoding problem of their NTRU-like codes. We note that
their paper lacks the proof of security and does not show zero-knowledge property
of the protocol. (We also note that we can easily repair the protocol and obtain
their security proof.) We also note that their protocol cannot be used as a proof-of-
knowledge argument for the relation on secret-key knowledge since they did not
split the permutation.
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9.2 Brief Sketch of NTRU

In this section, we briefly review NTRU. For details, see the original pa-
per HPS98, the proposals of the parameteidS00 HGSWO05 HHGP 07,
WHGH" 08, [HHHGWQ0Y, and the description iection 12.6

For a positive integem, NTRU is defined on a quotient rifig= Z[x]/(x" - 1).
For a positive integeq, we denoteZ[x]/(q, X" — 1) by Ry. We identify R with Z"
by identifyingf = 2{‘;01 fix € Rwith f = (fo, ..., fn1) € Z". We also identifyRy
with Zg.

Intuitively, the security is based on the hardness to factor a product of two short
polynomials inRy. Letn denote the dimension &;. The subsets dRy, Lf, Ly,
Lm, Ly, and Lg are defined later. They are used for key generation, encryption,
and decryption. While we do not consider the decryption in this paper, we note the
decryption procedure.

Scheme 9.2.INTRUEncrypt). Letn denote the dimension &. All the partici-
pant agree the parameters settings.

Setup(1"): Given the security parameteyoutput 1'.

KeyGen(param= 1"): Choosef « L andg « Lg with the constrain thait is
invertible inRy andRy,. SetFq « f~1in Ry. Computeh « p® g® Fqin Ry.
The public key ish and the secret key fs

Enc(ek=h,msg= m): The plaintext isn € £,. Generate a random polyno-
mialr « £L; and comput& < h®r + min Ry. The ciphertext i.

Dec(dk = f,ct = ¢): The ciphertext i€ € R;. Computea’ « f ® cin R;. Com-
putea «— peger+femin Rfroma’ by using a centering algorithm. Compute
Fp < f1in Ry. Computem’ «— Fp® ain Ry. The obtained plaintext isy’.

The decryption correctly works since the parameters are chosen carefully to
ensure thaa = peg®r +f ® min Rwith high probability. We omit the details of
the parameter setting; see the original paper or the papers on instant/BRBS]
WHGH* 08, I[HHHGWO09.

Let 7 denote{-1,0,+1}". 7 (di,d;) denotes the subset @f such that each
polynomial in7(dz, do) has exactlyd; codficients set to 1 and, codficients set
to —1. For an integea and a subse$ C Ry, we defineaS as{af : f € S}. Fora
subsetS C Ry, S* denotes the set of the polynomialsSrwhich have the inverses
iNRy, i.e, 8 ={f e S: I e Ry.

There are five instantiations of NTRU, NTRU-19981HS98, NTRU-
2001 HSOQ, NTRU-2005 HGSWO04, NTRU-2007 HHGP*Q7], and NTRU-
2008 WHGH*08, HHHGWO0Y, which are summarized ifiable 9.1 The fol-
lowing table summarizes the parameter sets of these instantiatiofigble 9.1
we use7 (dg, dg) instead of7 (dg, dg)* in NTRU-2008 for certain technical reason.
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Parameter Sets p L Ly Lm Lr Lr
NTRU-1998 ¥ 3 T(ds,ds — 1) 7 (dg, dg) T T(dr, dr)

NTRU-2001 prime 2 x {1+p®F:Fe Lg})* B(dg) B B(dr) B(dF)
NTRU-2005 prime 2 {1+p®F:FeLe})*  B(N/2) B8 X(dr) X(dg)
NTRU-2007 ¥ 3 {l+p®F:FeLg) 7(ds,df —1)* 7(ds,df —1) 7(ds,df —1) 7(ds,df — 1)
NTRU-2008 ¥ 3 {1+p®F:FeLg)  7(dg.dg) T T(d, dr) T (dr)

Table 9.1: Parameter sets. In NTRU-1998must be invertible irR.

9.3 Interpretation of NTRU as Lattice-based Encryption

Since we connect NTRU and the lattice-based protocol, we briefly review NTRU
lattices.

NTRU lattices: We consider the following matrixC which is generated by a
secret key:
C=[Rot'(f) Rot'(pag)|.

An NTRU lattice [CS97]] is generated by a basis

H =

Rot(1) Rot(0
Rot(h) Rot(@)|

Itis easy to verify that.(H) = Aq(C) by the equatiom = ! ® (p® g) (mod q).
Since Stern’s protocol and its variant us\e;(A) for someA rather tham4(C),
we have to findA € ZQXZ” such that (H) = Ag(A). As noted in the paper propos-

ing NTRUSign HHGPT03], we can verify that

L(H) = Ag([- Rot(h) Rot(1)]).
Thus, we defineA = [-Rot(h) Rot(1)]. In the following, we mainly consider
NTRU lattices in this form. We will give the details[Bection 12.6
9.4 The Xagawa—Tanaka Protocol

Now, we review the Xagawa—Tanaka proto@8TD9]. We first quickly review the
Stern protocol$ection 6. and the KTX RID protocol$ection 8.3.
9.4.1 Relations of Stern’s Protocol and its Variant

Let Bm(d) denote the set afrdimensional binary vectors whose Hamming weights
ared, i.e., the numbers of 1's are exactly As already seen iection 6.5 his
protocol is for the following relation:

{((A,u),€) € (Zg™ x Zg) x {0, )™ : (Ae=u (modq)) A (€ € B(d))}.
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Kawachi et al. proposed the variants of Stern’s protdkd{08] which appeared
in In a ring identification scheme based on their variant, the protocol
is for the relation

{((Aug,...,u),6) € (Z@™x Z) x {-1,0, +1}™
: (e = enoe)A(en € Bm(d))A(er € —Bi(1))A(Aen+[us ... uJlé =0 (modq))}.

In order to design the protocol, they split a permutation in Stern’s protocol; they
put two permutations in their protocol, while Stern put one permutation. (See
[Section 8.3and [KTX08, Section 5].)

9.4.2 The Xagawa—Tanaka Protocol

The Xagawa—Tanaka protoc®T09] has a similar structure of the ring identi-
fication schemes by Kawachi et dKTX08], which are obtained by splitting a
permutation in Stern’s protocdSie94 as in the above. We replace the two set,
Bm(m/2) and-38;(1), with the following enumeration sets.

Enumeration sets: For a positive integeam, we denote byrj] the set0, ..., n-1}.
Snh denotes the-dimensional permutation group, i.e., the group consisting of all of
the permutations oven]. The operator means the composition of permutations,
that s, @ = ¢)(X) = m(¢(X)).

We define a property of a subsetRyf. Letr be a permutation oven]. For an
n-dimensional vectof = (fo,..., fn-1) € Z§, we definer(f) = (fxo), - . ., fx(n-1))-
We note that, for a permutationover [n] and two polynomialsa andb in R,
n(a+b) = n(a) + n(b). For a polynomiak € Ry, Sx denoteqr(x) : m € Sp} C Ry.
We call these setsnumeration setsNVe note tha¥ (dy, d2) is an enumeration set,
while 7~ is not.

9.4.3 Description

For two enumeration set$;, andS;, consider the following relation:

R = {((Rot(an), Rot(@), u), (en, &)) € (Mg x Mq x Zg) X (Zg X Zg)
. (Rot(@y) - en + Rot(@) - & = u) A (&n € Sp) A (& € Sp)}.

This relation is interpreted as follows:

R={((an, a.u), (en. &) e RIxRG: (Bn@en+a®e = U)A(en € Sp) A (e € Sl

If an = —h anda; = 1, the relatiorR is directly for the NTRU lattice.

Let Com be the special type of a statistically-hiding and computationally-
binding string-commitment scheme asSeciion 5.1.3

Now, we describe the XT protocol, which is statistical zero knowledge and
proof of knowledge for the relatioR. For ease of notation, we do not write the
randomness of the functidbom
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Scheme 9.4.1The Xagawa—Tanaka protocdXT09]). The common input is a
triplet (an, a;, u) € Ra Prover’s auxiliary inputs are, ande; such that,®@e, +a®
€ = U, g, € S, andg € S;. The provelP and the verifie interact as follows:

Step P1: Choose random permutatiomg andr; over [n]. Choose random vec-
torsry andry € Ry and send commitmenys= (cy, C, ¢3) computed as follows:
® Cp «— COIT(ﬂ'h,ﬂ't, ahRIh+ a4 ® I’t),
e Cy « Com(mp(rn), me(re)),
e C3 « Con(mn(en + rn), (& + rv)).
Step V1: Send a random challengé € {1, 2, 3} to P. Each challenge 1, 2, and
3 corresponds to verifier's check “permuted,” “masked,” and “random.”
Step P2:
e If ch = 1, it revealsc, and c3. So, sendz; = (Wh, Wi, Xp, Xi) <

(7tn(€n), 7t(&), 7 (rh), 7e(re))-
e If ch = 2, it revealsc; andcs. Sendz; = (éh, ét, Yh, Yt) < (h, 7t, €n +

Ih, & + Iy).
e If ch= 3, itrevealsc; andcy. Send (i, v, Zh, Zt) <« (7th, 7, Fh, o).
Step V2:

e If ch = 1, check thatt, = Con(Xp, X;), €z = ComWp + Xp, Wt + Xi),
Wh € Sp, andw; € S;.

e If ch = 2, check thatt; = Com(¢n, ¢t,anh @ Yh + & ® Yt — U), C3
Con(gn(yn), dt(yr))-

e If ch = 3, check thatt; = Com(yn, Yt,an ® Zn + & ® ) and C;
Com(y/n(zn), ¥1(z1))-

Outputdec= 1 if all of the above checks are passed, otherwise outpci: 0.

Theorem 9.4.2. If Com is a statistically-hiding and computationally-binding
string-commitment scheme, the above protocol is a statistical-zero-knowledge and
proof-of-knowledge argument for a relatiGtwith soundnesg/3.

Proof. The correctness of the above protocol can easily be shown. The existence
of a knowledge extractor implies the soundness of the protocol. Thus, in the proof,
we show the existence of a simulator and a knowledge extractor. However, since
these proofs are very similar to the ones(81d96 [KTX08|, we omit the details

and give the sketch of the proof.

Statistical zero knowledg&:he construction of the simulator is similar to the ones
in [Ste96 and [KTXO03].

We construct a simulatd@® which, on input &, a;, u) and given oracle access
to a cheating verifiev*, outputs a simulated transcrif@.chooses a random value
chfrom {1, 2, 3}, a prediction of the valug* will not choose. Next, the simulator
chooses a random tapéof V*. We only show how the simulator works in the
casech = 1. The remaining cases can be proved by the similar way to the proof of
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Lemma6./.p

Casech = 1: S computesg/ ande; such thata, ® €, + a ® € = u by using
linear algebra. Next, it chooses random permutatignandr; over [n], random
ponnomiaIsr;] andry from Ry, and random strings; for i = 1,2, 3. It computes
commitments as

o ¢, = Con(np, 7, ah ® T + & ®I(;07),
o ¢, = Conl)(r7). mi(r{): o),
e c; = Cont(r (&, + 1), (€ +I{); p3)-

It sends the commitments Y6 and receives a challengbfrom V*. The simulator
S computes a transcript as follows:

e If ch=1, it outputsL and halts.
e If ch=2, itoutputs (’; (], C}, C3), 2, (1, 7r(, €, + I{, € + I'{, 07, 03))-
e If ch=3, it outputs (’; (C}, €}, C3), 3, (7rf,, 71(, (), [{, 075 05))-

We start the analysis of the cagle= 2. In this case, we have that
View§. (@, &, U) = (r; (C1, C2, C3), 2, (th, 7it, €n + T'h, & + I, p1,03)),
S(an, &, u) = (r'; (€1, €5, C3), 2, (mp, 7y, €, + I, € + 1, 03, 03))-

Consider a one-to-one mapping, {r;, r{,r{, 01, 05) = (Th, 7, Th+€n— €, It +& -
,p1,p3). By this equation, we have tha} = c¢; andc, = c3, and the responses
3

from the simulator equal to the ones from the prover. From the statistically-hiding

property ofCom the statistical distance between the distributions,adndc;, is
negligible. Thus, the distributions of \ﬂr@z\(z)(ah, a;, U) andS(ap, a;, u) are statis-
tically close.

In the casech = 3, it is easy to verify the statistical distance by setting

(7t e T T 075 05) = (7T, 71, T Tt 01, 02)-

Proof of knowledgeWe construct the extractor followin{e9¢ and KTXO08].
Assume that there exisis that convincingv with probability 2/3+ €. The knowl-
edge extractoK works as follows:

1. Choose a random tape Bf.

2. Obtain three transcripts by acting as the verifier and by setting 1,2, 3.
Each pi(j) denotes the random string in the commitmentin the case
thatch = j. The three transcripts arec{(Cy, C3), 1, (Wh, Wt, Xh, Xt, p(21)7 pgl))),
((C1, €21 Ca), 2 (¢hs 1 Y. Yoo 7 £5))s @Nd (€1, €2, €3), 3, (W Yt 20, 20,057, p5).

3. Output @ (wh), ¢ 1 (wy)) as a witness.

We analyze the probability that the output is the witness corresponding to

(an, &, u). Since the probability theR* convincingV is 2/3 + ¢, for € fraction of
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random tapes three transcripts are valid. Hence, we have the following equations:

Con{gn. ¢r. 8 ® Y + & ® Yo — Ui pi”) = COMYn, Y, an @ Vi + 2 © 215,

(9.1)
Com(xn, X; 057) = Com(yn(zn), ¥1(z0); pS), (9.2)
ComWh + Xn, Wy + X; p47) = Comgn(yn), ¢(yo); 2. (9.3)

By the assumption thafomis computationally binding, there exists no distinct
pair of arguments a€omin the equationsd.1), (8.2), and B.3). From the equation
(@3, we have thayn = ¢ (Wh + Xn) = ¢ (Wh) + ¢, (xn) andyr = g7 (w) +
#;1(x;). Combining the equations, = ¥n, ¢¢ = ¥, and B.2), we obtain that
Zn = ¢, (xn) andz; = ¢;1(x;). By substitution in the equatio®{l), we have that

an® (@, "(Wh) 5" (Xn)) +a® (6 (W) +¢; (X)) U = an® (" (Xn)) +a® (¢ (X1))-
Simplifying the above we obtain that
an ® (¢, (Wn)) + & ® (¢ (W) = u.

Recall thatSy andS; are enumeration sets. Therefaggt(wp) € S andg; (w;) €
St. This completes the proof. m] m]

9.4.4 Relations for NTRU

In this section, we tailor the relations for instantiations of NTRU.

Relations on Secret-Key Knowledge

For NTRU-1998: The secret key$ andg are chosen fromr (ds, d; — 1)* and
7 (dg, dg), respectively. Additionallyf must be invertible ifRz = Z[e]/(3, 2" - 1).
The public key is computed ds= 3g® 2.

We define the following relation:

Ry = {((-h.1,0). (.39)) € R} x R}
:(-h®f+3g=0)A (f € 7(ds,ds — 1)) A (39 € 37 (dg, dg))}-

For NTRU-2001: The secret key is chosen from{1 + p® F : F € B(dr)},

wherep = 2 + a. The polynomialg is randomly chosen fron(dg). The public
key is computed aB = p® g® (1 + p ® F)~1. We define the following relation:

01— {((-h, Lp " @), (F.0)) € R x R2
(-heF+g= p_1 ®h) A (F € B(dr)) A (9 € B(dg))}.
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For NTRU-2005: As in the relation on plaintext knowledge, we cannot define
the relation on secret-key knowledge of the encryption in NTRU-2005, diace
X(dg) is not an enumeration set. Again, a simple modification allows us to define
the key-pair relation for the modified version of NTRU-2005.

For NTRU-2007: The secret key is chosen from1l+ 3F : F € 7(d¢, ds — 1)}*.
The polynomialg is randomly chosen fromr(ds,ds — 1)*. The public key is
computed as = 3g® (1 + 3F)~L. Let 31 be the multiplicative inverse of 3 iR
We define the following relation:

®7:= (. 1.3 o h).(F.0) € R x R
1(-he@F+g=3"®h)A(Fe7(ds,df — 1)) A (g€ T(ds.df — 1))

For NTRU-2008: The secret key is chosen from1 + 3F : F € 7 (dg, dr)}*.
The polynomialy is randomly chosen fromi (dg, dg). The public key is computed
ash = 3g® (1 + 3F)~1. We define the following relation:

¥ =1{((-h.1,h),(3F,30)) e R} x R
:(-h®3F +3g=h) A (3F €37 (dr,dr)) A (39 € 37 (dg, dy))}.

Remark 9.4.3. We note that these relations do not imply thandg are invertible
in Ry. Moreover, these relation for NTRU-1998 does not assuref tisanvertible
in Rp. They guarantee that the norm off andg is relatively short and one can
decrypt ciphertexts by using the polynomiélandg in the instantiations except
NTRU-1998. In NTRU-1998, the keys satisfying the relation would imply the
partial decryption.

Relations on Plaintext Knowledge

Recall the encryption procedure of NTRU. Lmatandr be a plaintext and a ran-
domness, respectively. The ciphertei@m+h®r. Instead off", we user (dp, dm)
for somedy,. By changing the message spaces, egglis treated as an enumera-
tion set.

For NTRU-1998 and NTRU-2008: £, is set ay (dr, d;). We define the follow-
ing relation:

Ne = REe = 1{((h,1,c),(r,m)) € Ry x R
c(her+m=c)A(r e 7(dr,d)) A(mMme L)}

For NTRU-2001: In this case,[; is set as8(d;). We define the following rela-
tion:

e ={(h,1,0,(r,m) e RExRE: (her+m=c)A(r € B(dh)) A (M e L))
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For NTRU-2005: X(d;) is defined agf; ® f, + f3 : fi € 8(d;)} and is not an
enumeration set. We cannot define the relation on plaintext knowledge of the en-
cryption in NTRU-2005, sinc&(d;) is not an enumeration set.

However, simple modification allows us to define the relation for NTRU-2005
as in the above. For example, we could ugéd;) = {f € X(d;) : f € {0,1}"},
which is an enumeration set, insteadX{fl,).

For NTRU-2007: L, isseta¥ (d;,d;—1) and soisL,,. We define the following
relation:

¢ = ((h.1,0).(r.m) € Ry x R,
c(her+m=c)A(r e 7(ds,ds — 1)) A (M € 7(ds, ds — 1))}

Remark 9.4.4. In order to prevent information leakage am NTRU-2008 rec-
ommended that the numbers of 1dls, and Os in a plaintext are at least some
parameter. (Se&VHGH"08, I[HHHGWOQS Section 9.2.2]).

Additionally, we note that certain encryption schemes used the enumeration set
B(d) as the plaintext spaces. For example, the Chor—Rivest cryptosystem and the
Okamoto-Tanaka—Uchiyama cryptosystem did so.

9.5 Identification Schemes

We can simply develop identification schemes based on NTRU from the XT pro-
tocol; A key-generation algorithm is same as the one in NTRU. A prover and a
verifier runs the protocol for secret-key knowleddines sequentially or in paral-

lel. Let us discuss the security of this identification scheme. In the following, the
security parameter specifies the parametel§ p, andqg, and the space§s, Lg,

L, and L;.

Assumptions: In the literature of padding schemes for NTRU, their securities
are build on the one-way or the partial one-way assumption; the standard one-way
assumption is stated as follows:

Definition 9.5.1(The NTRU (one-way) assumptianlt is asymptotically hard to
solve the NTRU inversion problem; For any polynomial-time adversénthe
success probabilithdvTe, (1) is negligible inn; where

A(h,c)=m:

ow —
AdVNTRU,ﬂ(n) =Pr (h,f) « KG(1");m « Lm;r « Lr;c=h®r +m

The problem on recovering the secret key is not easier than the problem on
inverting the NTRU function, since, if one can get the secret key, then one can
decrypt the ciphertexts.
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Definition 9.5.2(The NTRU factoring assumption)his assumption states that it
is asymptotically hard to solve the NTRU factoring problem; For any polynomial-

time adversaryA, the success probabili&dvﬁ%RU,ﬂ(n) is negligible inn; where

(h=pefteag)Af e L)A(deLy:

fac —
AdVNTRUAMN =PIl 1 ' ke 1); (7, o)  Ah)

Note that in the NTRU factoring assumption, the adversary has to ofitpiich
has an inverse iRy.

As stated in Remar®.4.3 the XT protocol does not ensure that the prover
hasf which is invertible inR,. Thus, we need another assumption which may be
stronger then the NTRU factoring assumption.

Definition 9.5.3(The NTRU decomposotion assumptiofhis assumption states
that it is asymptotically hard to solve the NTRU decomposition problem; For any
polynomial-time adversarg, the success probabilinvﬂeTCRUﬂ(n) is negligible

in n; where

f"eoh=peg)A{" e Li)A (9 € Ly):

dec _
AdV\7Ry A(N) = Pr (h,f) « KG(1"); (f,g) « A(N)

The adversary violating this assumption still can be used to invert the NTRU
function: Invoking the adversary, we obtdihandg’ such that’ € L, g’ € Lg,
andf’ ® h = p® g’. Assume that the ciphertext is in the foom= h®r + m.
Multiplying f’ to the ciphertext, We have thét® c = peger +f @min R,.
Since the parameters are set to decrypt correctly with overwhelming probability,
we can compute’ = p®g®r +f’ ® m overZ. Hence, we obtaif ® m in Rp.

In the case of NTRU-2008(; is {1 + pF}. Hence, we can correctly compute

In the case of NTRU-1998(; is 7 (d¢, df — 1). Even iff” is not invertible inRp,

we can partially decrypin as stated in Remai®.4.3 Consequently, the NTRU
decomposition assumption is not stronger than the NTRU one-way assumption.

9.5.1 Description

As stated in the first paragraph of this section, we can develop a passive-secure
identification scheme based on NTRU from the XT protocol for secret-key knowl-
edge, since the protocol composed sequentially is a proof of knowledge and statis-
tical zero knowledge.

Let Com be the special type of a statistically-hiding and computationally-
binding string-commitment scheme agdacfion 5.1.3

Scheme 9.5.4NTRU-ID).

Setup(1"): Given 1, output 1.

KeyGen(1"): Choosd « Lt andg « Ly with the constrain thétis invertible
in Ry andRy. SetFq « f~1in R;. Computeh — p® g® Fqin Ry. The public
key ish and the secret key i$,(@).
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P and V: The common input is the pubic kéye Ry. Prover’s auxiliary input is
(f,g). The proverP and the verifielV interact as follows: The prover and the
verifier runs the XT protocol foRkgy in t-parallel ort-sequential.

9.5.2 Security Proofs

Theorem 9.5.5.LetNTRU-IDs andNTRU-ID, denote obtained ID schemes by the
sequential composition and by the parallel composititimes, respectively. As-
sume that there exists an adversaiyhat impersonates the valid prover with prob-
ability at leastAdv|y"; "A(n). Then, there exists an adversaywhich solves the

NTRU decomposition problem with probability at IeAslvﬂleTCRU’B(n) or breaks the
binding property of the commitment scheme with probability at ladstom s(n).

The proof is obtained by applying the argument of Poupard and
PointchevallPP03J to the proof by Stern$te9§.

Proof. We only give the proof for the sequential composition, since the proof for
parallel composition is very similar to the onéSecfion 6.7 We note that the proof
for the sequential composition is also very similar to the ones of S&a®§ and
Pointcheval and Poupar@P03.

Assume that there exists a polynomial-time advers@athat impersonates the
prover with probabilitye. We first replace the prover oracle with the simulation.
This change introduces the statistical distaQtA.

Let w denote the random tape of the advers#ty Let | denote the random
tape of the verifier that is identified with the challer@e {0, 1, 2}!. Let us denote
by S the set of the pairsuf, |) which lead to acceptance. Hence, we have that
Prwnl(w,1) € S] = € = (2/3)' + €. Next, we define the s& = {w | Pri[(w,1) €
S] > (2/3) + €/2}. A standard argument shows that,Rs € Q] > €/2 and
Pr[Q | S] > € /2e. Assume in the following that the evefitoccurs.

Next, consider the execution tr@€w), corresponding to all acceptédwith
a fixedw. We denote byy; the number of the nodes at the depttWe know that
np = 1 andn; = 2! + 3'¢’/2, becausey/3 = Pri[(w,1) € S] > (2/3)! + €//2. So,
we have that

t-1
Ni+1

n;

M € o €\ o, €
ELLIN SN N [ B I S
g w23 —( 2) T2

By taking the Iogarithm of the inequation and using the convexity of the logarithm,
we obtain that

t-1
Nit+1 (

log

1—5) IogZ‘+— log3 >t(|ogZ+—Iogg)
i=0 i

Therefore, there exists< t such that
Mit €2 _ € log3 I P
o > 2(3/2) 2exp( -log = ) (1+ > log 2) >2 (1+ 5).
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Let f; andt; denote the number of nodes at depttith exactly 3 sons and that with
at most 2 sons, respectively: We have that

n = fj +tandnj.1 < 3fi + 2t = fi + 2n;.

Therefore, for the abovie we obtain that 2 fi/nj > ni.1/ni2 + 2¢’/5. Thus, so,
with probability greater thane2/5, the path contains a node with 3 sons.

Now, the strategy of the reduction is as follows: (1) choose a randomuape
for the adversaryA. (2) choose a random challengfor the simulated verifier. (3)
using a ZK simulator, simulating the prover oracle. (4) checkikp@ssible nodes
along the pati. With probability greater thas(e’/2¢)(2¢’/5) = €'?/5, we have
found a node with 3 sons.

Assume that we have found a node with 3 sons. In that case, the reduction
algorithm can obtains a collision for the commitment or solves the problem as in
the proof of Stern$te9§.

Hence, we have that

’2

€
T Q< AdV Sy 5(K) + Adveom s(K).

O

Remark 9.5.6. Since the protocol is (cheating-verifier) zero knowledge, the re-
duction algorithm can simulate the valid prover even if the adversary accesses the
prover oracle in an active way. This reduction requires as many steptkases

of the original reduction. For simplicity, we only consider the reduction for the
passive adversary.

9.5.3 Parameters and Communication Costs

In order to achieve the 80-bit security, we can set
(2/3) < 278, andAdv{Eh, 5(K). Advcoms(K), Qta < 2716

By solving (2/3)' < 2781, we have that > 13847... and sett = 150 (with rea-
sonable margin). We use NTRU and the hash function which is suitable for use at
the 192-bit security level. By settin@ = 25°, we haveA < 272348137 gnd set
A = 2256

In NTRU-2008 WHGH* 08, HHHGWO09, three parameter sets, ees677epl,
ees887epl, and ees1087epl, are recommended for the 192-bit security level. We
adopt ees677epl: the public-key length is 63§ 2048= 7447 bits and the secret-
key length is 677 2 = 1354 bits.

We next adopt the Halevi-Micali commitment scherh®M96]. In this case,
we need a 192-bit secure cryptographic hash function which outputs the digest of
length at least 384 bits. Then, we have the commitment scheme where the length
of the commitment is 7384 = 2688 bits and the length of the decommitment is
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Im| + 2688 bits (is a message to be committed). We have to comjmiteThe
prover will sends two permutations and two vectors, or four vectors in Step P2. In
the former, the length of the message if0g 677!+ 2-667-log 2048~ 25686 bits.
In the latter, the length of the message i$27-log 3+ 2-677-log 2048~ 17041
bits.

Thus, the total communication cost is 1%8- 2688+ 2 + (25686+ 2- 2688))=
5869200 bits (approximately 7BkB).

Discussions: By parallel composition, we can obtain almost the same identifica-
tion scheme. However, this scheme has a drawback in the sense of tightness of the
reduction. In this case, the tightness is cubic as in Kawachi eKaX08], rather

than quadratic as in the above.

It seems that concurrently secure identification schemes need stronger assump-
tions, such as the one-more NTRU one-way assumption or the assumption that the
small integer solution problem over NTRU lattices is hard on the average. The
small integer solution problem, §JSs, given a matrixA ¢ ngm, to find a non-

Zero vectorz € Aé(A) such that|Z| < B8 in some norm. Using this assumptions,
Lyubashevskyllyu08¢ and Kawachi et al [KTX08] succeeded to construct con-
currently secure identification schemes based on lattice problems.

9.6 Comparisons

There are several identification schemes based on combinatorial problems.
We compare the schemes such as Stern's SD-b#&S&9¢, Shamir's PKP-
based[Eha89, PPP-based by Pointcheval and Poup®&BQ03, Lyubashevsky’s
C/IL-based [Lyu08a [Lyu08H, and GIL-based by Kawachi et alKITX08] identi-
fication schemes. For the comparison with standard identification schemes, we put
GQ [GQ8Y and Schnorr$ch9} in Table@.2

In the papers$te96/Sha89, the authors ignored the commitment scheme and
directly used the hash value. Thus, the proofs are not correct in the standard model
(this requires stronger assumptions on the hash function). We, hence, replace the
hash function with the commitment scheme.

The main dfficulty of comparison is that the parameter settings for other
schemes were not explicit. They did not propose the parameter-generating method
in order to attain the security level. Here, we briefly discuss the parameters and
costs if we set 8it securityfor the identification schemes.

Storage costs: Notice that, in all reduction, the advantages of the adversary
against identification schemes are upperbounded by the square roots of the advan-
tage of the adversary against the assumption that the underlying problem is hard.
Thus, the best work factor for solving the underlying problem must be at 1&st 2
We here require 196-bit security for the underlying problem.

Recall that in the case OfTRU-ID, we have a 7447-bit public key.
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Name Reduction Security | |pk (kB) | Cost (kB) Ref.
NTRU-ID (2/3) + V5Ve(K) + € (K) + QtA P (A) 0.91 7165 [XT09|
St-ID (2/3) + V5 Ve(®) + €(K) + QA P (A) (50 9351 [Steog
PKP (%;)‘ + V5758 Ve®@+ €K+ QA | P(A) | >2313 | >900 [Shas)
PPP (3/4) + VIABVe + €+ 208 | P(A) | (%55, | 26370 | [PPO}
Ly09-1D V2e(K) + 4 - 27KU5 4 2-3Klogk/4 C ? ? [Cyu09|
SEIDE (2/3)' + VI0V2e(K) + QA7 + 270 C ? ? [KTX08]
(cf) GQ (1/2)® + Ve(k) P (it | 1885 | [GQ8
(cf:) Schnorr (1/2)® + Velk) P (Dot 0.967 [Schoy

Table 9.2:Comparisons on reduction and security. Not&RU-ID, St-ID,, PKP,

PPP, andSt—IDg/,L’p run the basic protocol ihtimes sequentially. Iiy09-ID, t

is the number for parallel. Eacdi(k) denotes the advantage of the polynomial-
time adversary against the underlying problem. Eé¢k) denotesAdv(b:dOM(k),

the advantage of the polynomial-time adversary against the commitment scheme.
In St-ID(*:/IL, , A’ denotes the regularity of the lattice-based hash functions. In GQ
and Schnorr|(k) denotes the length of the challenge message. In the column of

security, P, A, and C denotes passive, active, and concurrent, respectively.

In the GQ and Schnorr schemes, the RSA modNusr the parameter for
the groupp is often of length 2048 bits. However, to achieve 196-bit security,
they should be 7680-bit numbers. Interestingly, in the GQ scheme, the public key
consists oN and two elements X in Z3,, so, the length of public key is longer than
that of NTRU-ID. Even if (N, €) in the GQ scheme angin the Schnorr scheme is
public parameter, there is a littleftBrence between the length of the public key.

In Stern’s schemest-ID, [Ste9§, in order to achieve 196-bit security, it
requires a random matrix iZg™ as a public parameter, where, g, m) =
(2,167Q 3340) (see the estimation by Canteaut and Chabt@@®§ Approxima-
tion 1]). Hence it requires approximately 680kB for the public parameter. Each
public key is a vector ifZg, whose length is 1670 bits.

In the PKP scheme, Shamir proposed the parametey,senf) = (251 16, 32)
and @,n,m) = (251, 37,64), which may achieve 76-bit and 184-bit security. We
adopt the latter parameter set. In the case, the publi®kieya matrix inzgxm and
the length of it is 18944 bits (approximately32kB).

In the PPP scheme by Poupard and Pointch@&®R0[3, they proposed several
parametersr(m) = (121, 137) and §, m) = (201, 217), which are estimated?
security and more. Hence, we adopt the latter. Note that their public parameters
are of length at least 201217 = 43617 bits. Each public key is a vectori#,
whose length is approximately 1560 bits.

Communication Costs: The communication costs mainly depend on the domain
size of the permutations in the protocol. In PKP and PPP, they used a permutation
over [64] or over [217], respectively. Thus, their communication costs are relatively
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low. On the other hand$t-ID, uses a permutation over [3340] ahd’ RU-ID
employs two permutations over [677]. Hence, the communication costs are very
large.

9.7 Concluding Remarks

On computational-zero-knowledge proof systems: By using the hard-core bit

of NTRU [NSWOQJ or the general hard-core predicate by Goldreich and Levin,
we can construct computationally-hiding and statistically-binding bit-commitment
schemes from the NTRU one-way assumption. By using the above commitment
scheme, one obtains computational-zero-knowledge and proof-of-knowledge proof
systems for the same relations.

Signature schemes: In the literature, there were two practical signature schemes
based on NTRU, NSSHPS0] and NTRUSIignIHHGP03]. Unfortunately, their
security were not proven under plausible assumptions. Indeed, NSS and a simple
version of NTRUSIign were already broké@JSSO1INROg.

Meanwhile, applying the Fiat-Shamir transformation to the 3-round paral-
lelized version of the XT protocol, we can obtain a secure signature scheme under
the NTRU decomposition assumption in the random oracle model. However, the
XT-NTRU signature scheme is far from practical use.

We finally mention the signature scheme by Gentry, Peikert, and Vaikun-
tanathan/GPVO§. In their scheme, the public key 8 € Zg*™ and the secret
key is a short basis ofg(A) in thel, norm. We already saw that the short vector
fo(pg)isin Aa([— Rot(h) Rot(1)]). By rotating the short vector, one can obtain
a half of the basis of the NTRU lattice. ifstein, Howgrave-Graham, Pipher, Sil-
verman, and Whyte proposed the NTRUSigGP" 03] in 2003. In HHGP 03],
they discussed how to obtain the remaining half of the basis of the NTRU lattice.
They used certain norm rather than th@orm. The method obtaining the remain-
ing half of a short basis i norm would yield a secure signature scheme based on
the NTRU problems in a similar way to the GPV signature sch&i&\0q.
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10

Trapdoors for Lattices

Organization: We briefly introduce the background of trapdoor functions based
on lattice problems ifgection 1011 In[Section 10.Rwe review the definition of
(one-way and collision-resistant) preimage sampleable functions (PSFs), which
suit for lattice-based trapdoor functions. [@ection 10.Bwe review the Alwen-
Peikert algorithm for trapdoor generati@@ection 10 Keviews the sampling algo-
rithm for Dx s by Gentry, Peikert, and Vaikuntanathan (which appears originally
in Klein [Kle0q]). In Secfion 10.,bwe describes lattice-based PSFs obtained by
combining the abovesSection 10.Kllustrates the ideal version of the Alwen-
Peikert construction. I&ection 10.J&lescribes an instantiation of PSFs from ideal
lattices.[Section 10.8eviews the notions of “Bonsai” techniques. We apply these
techniques to ideal-lattice-based constructioriSestion 10.0 As direct applica-
tions of PSFs, we construct lattice-based trapdoor hash functi@ecion 10.70

10.1 Introduction

In the seminal paper of Ajta§jt96], he gave an instance-generation algorithm for
SIS that outputsA, €): Generate a random vecter— {0, 1}™, generates a random
matrix A € ngm with constrain thatAe = 0, and permutes them. But, an instance-
generation algorithm that outpus « Zg*™ with the short basis of;(A) is
non-trivial. After this algorithm, he proposed the instance generation algorithm for
this problem|Ajt99]. This algorithm was an isolated point of lattice-based cryptog-
raphy; because in about decade, there were no cryptographic schemes employing
this algorithm.

In 2008, Gentry, Peikert, and Vaikuntanath@PV0¢ showed that the short
basis has a power of sampling the discretized Gaugsiapt on the latticeA. They

111



10.2. DEFINITION OF PREIMAGE SAMPLEABLE FUNCTIONS

also improved the analysis of the Ajtai algorithm. Alwen and Peikert further im-

proved the Ajtai algorithmAPO09. Finally, in 2009, Steld, Steinfeld, Tanaka, and

Xagawa BSTX09 proposed an ideal version of the Alwen—Peikert construction.
These algorithm allows to implement trapdoors fiar (or hy). The trapdoor

is a basisT of a lattice Ag(A) (or Ag(Rok(&))) such that|T|| < L for someL.

One can sampl@,\é(ALSC (or DAé(ROE(é)),S,C) by usingT for s = L - w(+/logn).

Turning it into hash functions, one can sample preimages€) of u (or u). Since

appearing distributions are not uniform, Gentry et al. defined preimage sampleable

functions rather than trapdoor functions for generality.

10.2 Definition of Preimage Sampleable Functions

Roughly speaking, preimage sampleable functions (PSFs) is a hash femily
{Hy}, whereH, = {fy : Dn = R, | (a,t) € Ky x Ty}, defined with a distribution
ensembleX = {X,} overD = {Dy}. First, one carsamplepreimages ofy € R,
under f; by using the correspondingto a. Next, the two distributions of the
samplesX,y) and ', y’) must be statistically identical, wherg, §) is sampled by
X « Xy andy « fy(y) and ',y) is sampled by’ < U(Dy) and obtainingx’
by the above trapdoor sampling procedure. In addition, the distribdiiRf) is
almost uniform oveR,.

Gentry et al.[GPV0{ defined it in the algorithmic form and we follow them.

10.2.1 Model of Preimage Sampleable Functions

The preimage sampleable (trapdoor) functi®&F defined by a quadruplet of
algorithms TrapGen, Eval, SampleDom, SamplePre).

TrapGen(1"): Atrapdoor-generation algorithm, given the security paraméter 1
outputs a description of functioa € K, and its trapdoot. (Notice thata
defines the functiory : Dp — R;.)

Eval(a, x): An evaluation algorithm, givem and an elemenk € Dy, returns
y = fa(x).

SampleDom(1"): A domain sampling algorithm, given the security parameter
1", samplex € Dy, from some distribution oveb,,.

SamplePre(t,y): A preimage sampling algorithm, given a trapddocorre-
sponding tca and an imagg, samples< from some distribution oveD,,.

Definition 10.2.1 (Preimage Sampleable Function§)fe sayPSF is preimage
sampleable function scheme if the following conditions hold: X éenote the ran-
dom variable stands for the output 8 mpleDom and letX, denote the random
variable according to the conditional distribution of the outpiily SampleDom

givenfa(x) =y.
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Domain sampling with uniform distribution: With overwhelming probability
of the choice ofa, SampleDom samples arx for which the distribution of
fa(X) is statistically close to uniform ové®,. Formally,

Pr{A(fa(X). U(Ry)) < negl(n) : (a.t) « TrapGen(1"); | > 1 - negi(n).

Preimage sampling with trapdoor: With overwhelming probability of the
choice ofa, SamplePre, givent andy, samples ax for which the distribution
of xis statistically close to that of,. Formally, for anyy € R,,

Pr[A(SampIePre(t, y), Xy) < negl(n) : (at) « TrapGen(1"); ] > 1-negl(n).

10.2.2 Security Notions

Roughly speaking, we say thABSF is one-way if any polynomial-time adversary
cannot, givera andy, output a preimage of y under f;. We say thatPSF is
collision-resistant if any polynomial-time adversary cannot, gigeoutput dis-
tinct x, X' € Dj such thatfy(x) = fa(X’) and the conditional min-entropy of
X « SampleDom(1") given f3(X) = yis at leastv(logn). Note that the dference
between the collision-resistance definitionsHaflsh andPSF. (The definition of
the hash scheme does not require the min-entropy condition.)

Formally, we define the following experimerExppg, (n) andExpgge ,(n)
between the challengérand the adversars.

Experiment EXppg ,(n):
Setup Phase:The challengeC runs TrapGen with 1" and obtains &, t).

Next, it generatey <« R, uniformly at random.C feedsa andy to the
adversaryA.

Challenge Phase:. A outputsx. If x € Dy and f3(X) = y then the challenger
returns 1, otherwise, 0.

Experiment EXpgge 4(n):

Setup Phase:The challenge€ runsTrapGen with 1" and obtainsd,t). C
feedsa to the adversaryA.

Challenge Phase:A outputsx and X’ If x,X € Dy, X # X, and fa(X) =
fa(X) then the challenger returns 1, otherwise, 0.

Definition 10.2.2. Let PSF = (TrapGen, Eval, SampleDom, SamplePre) be a
preimage sampleable function scheme. lz&ebe an adversary. Let the advan-
tage ofA against one-wayness Belvyd, (n) = Pr[Exp‘F’,"SVFﬁ(n) = 1|. We say
that PSF is one-way if, for any polynomial-time adversas, Advﬂash’ﬂ(n) is
negligible inn.

Let the advantage ofA against collision resistance b&dvS.. .(n) :=

PSF.A
Pr[ExpgSF,ﬂ(n) = 1]. We say thaPSF is collision resistant if, for any polynomial-

time adversaryA, Adv,%rSF’ﬂ(n) is negligible inn andthe conditional min-entropy
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Ho(X | fa(X) = y) is at leastu(log n), whereX denotes the random variable which
stands for the output ampleDom(1").

10.3 The Ajtai and Alwen—Peikert Constructions

We next review the one of the underlying component of lattice-based PSFs, the
Ajtai and Alwen—Peikert constructions. As notedSection 10.11 Ajtai [Ajt99]
proposed that the instance-generation algorithm which outputs a random matrix
A and a short basi§ of a lattice Aj(A). There are improved versions of the
algorithm by Gentry et allGPV0§ and by Alwen and Peikeri3P09. We follow

the construction by Alwen and Peikert.

10.3.1 Main Strategy

Assume that we have a random matéx € ngml. We then want to construct

randomA; € Zg“™ with a short basi§ e Zg*™ of Az (A), wherem = my +m and
A =[A4|Az]. Letd = (1 + 6)nlogg. We suppose thaty > d which will support
the uniformity of A.

To constructS, we first compute an Hermite normal forkh € Z™M>™ of a
basis ofAg(A;). SinceH is a basis ofAg (A1), we have thah;H = O (mod g).
With high probability,Aé(Al) is full-rank, and so iH.

Next, let us construdt = [H|U; Oll ] for someU € Z™*™ and A, € Zg*™
such that A1|A2]F = O (mod g). In order to do so, we sek, = —A;U (mod Q)
and we haveAF = [AjH|A;U + Az] = O (mod q), whereU has randomness to
applying the leftover hash lemma and will be defined later. NoticeRhata basis
of Ag(F) by construction.

We then construct a unimodular matgX = [—1,|O; P|B] such that a basis
S = FQ is short. We will setB an upper triangle matrix with diagonals 1, which
yields the unimodularity o®. We figure them as follows:

P R P A

S F Q

By settingU = R + G, with G to be defined later on and a random matrix, we
will have thatA; is almost uniformly random by the leftover hash lemma. More
precisely, we seR = [R; 0] € Z™*™ and R’ is chosen from{—1, 0, +1}9x™.
According to the structure @, we have that

D= (G+R)BandV = —H + (G + R)P.

The matrixG will be designed t@GGP = Hy — 4. So, we letv = RP - I,,. Note
thatD = GB + RB and hence we lalV = GB.
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Preliminaries of the constructions: We first show thatF is a basis of
Az ([A1]A7]).

Lemma 10.3.1.If H is a basis ofA;(A;) thenF is a basis ofA; ([ A1 Az]).

Proof. Let A = [A;|A;]. Consider ang;oe; € Ag(A). We have thal-(e;0€p) =
Azer + Azex = 0 (mod ). SinceA, = —A1U in the construction, we also have
that

Ai(e1 - Ue) =0 (modq).

Thus,e; — Ue; € Ag(Ag). This indicates there is sonvee Z™ such thatHw =
e1 — Uey, sinceH is a basis of\; (A).

We note thatr ¢ Ag(A) since AF = O (mod q) by the construction. Since
dlm, S Ag(A1), the basisH of Ag(Ay) is full-rank. Thus,F = [H|U; Ollm,] is
also full-rank.

Hence, we can write; o &, = F(c; o ¢p) for somec; € Q™ andc, € Q™. It
sufices to show they are integer vectors. This means Hcy + Uc, ande, = c;.
Thus, we have that = Hcy + Ucy andHcy = g — Uey € Z™. Hence,c; = w
and we have confirmed thaj and c; are integer vectors, which completes the
proof. ]

Notice that the determinant ¢f is at mostq" and each diagonal dfl is at
mostq (the equality holds when the columns Af generate&l).

Hereafter, we setv = GB. We often use the matriX, = {t ;} € Z°, where
tii = 1,11 = —r, and all othet; j's are 0. lllustratively,

1 2 3 « 1 2 3 p
1 [1 —r 1 r r2 r<-1 ]
2 1 - 2 1 r rk—2
Te=3 1 T =3 1
—r r
K 1 | K« 1

It is easy to verifyT ! is the inverse oT, by a multiplication.
There are three versions of the Alwen—Peikert construction. See the following

sections[§ecfion 10.3}ZSection 10.313andSection 10.3%

10.3.2 The First Construction

Theorem 10.3.ZAlwen and PeikerfAP09). Lets > Oandr > 2 be any constant.
Letmy = nmy(n), mp = mp(n), m = my + mp, andq = q(n). There is a probabilistic
polynomial-time algorithnmExtLatticel that, on inputl" and uniformly random
matrix A; € Zg“™, outputs a pail(A = [A1|Az], S) € Zg™" x Z™™. If my > d =
(1 +6)nloggandmp > 2nlogq,

e Ais (my - g °"2)-uniform overzg<™,
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e Sis a basis ofA*(A), and

e for anyw(+/logn) functions||S| < (my+nlog, q)-w(+/logn) with overwhelm-
ing probability.

Description: We start with a construction d@; LetH” = H — |,. Letc and
¢ denotei-th diagonals ofH and H’, respectively. Notice that; € [1,q]. Let
li = [log, ¢l < 1+ log, ¢i. Define the partial sumsy = 0, s; = sj_1 + |; for
J € [my]. Define the total suns = sy, .

Note that ifc; = 1 thenl; = 0 and there are at mostog g values ofi for which
¢ > 1. In addition, we have thdf;m,; i < q", since detd) < q". Therefore, we
have thats < nlogq + };; log, ¢ < 2nlogq < m.

Here, we set

B= diag(l]l, cees T|ml, Imz—s)-
We note that
B™l= diag(‘l’l‘ll,...,TI‘mi, | mp_s)-

We next splitW andG into m; + 1 matrices wher&Vv = [W®)| ... |\w(™)|Q],
G = [GOD)...|IcM)|0], and WX, GK e zMXk for anyk € [my]. Let WK =
K K
W icim.jepig andG® = (g Yicmy jepig- We set

V\I(k): 1 (i:kandj:l),‘
10 (otherwise)

By this construction, we have that

9 _ {rj (i=K),

% 7o (otherwise)

sinceG = WB™L. Letg =[1.r1,...,r'"1] € Z. lllustratively, we have that

1 2 . m
1 ai,
2 a,
G=.
my i,

Using this construction, makinGP = H’ = H — |, is straightforward; Let
P = [PD;...; P(™); 0], where P® = [pl]...1p})] and pﬁk) e Zx LetH’ =
{h b jermy) -
For anyi, j € [my], we have that
ro_ (i)
hij=9-p

by the construction ofs. Hence, we sepl(j) to be ar-base decomposition drqj
and have that each cieient in pl(’) isin[0,r — 1].
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Length of S; The norm ofS is max||Si1|, ||}, whereS; = [V; Pl and S, =
[D; B].

We start to estimate the norm 8f. Recall thatU = G+ RandD = UB =
GB + RB. We have thafiGB||? < |W||?> < 1. We also havéiR|| < Vd and thus
IRB|| < (r + 1) Vd. Hence||D|| < |GB|| + |[RB|| < 1+ (r + 1) Vd < (r + 2)Vd.

IS2112 < IDI + 1BI? < (r + 2)°d + (r? + 1) < (r + 2)%(d + 1).

Next, we estimate the norm &. Simply, we have thatP|| < +/s- (r — 1).
Recall thatv = RP - Iy, . Hence, we have that

V]| < Vd-(r - 1)s+ 1.
This indicates
IS1lIZ < VIR + 1P < (Vd(r — 1)s+ 1)? + (r — 1)%s < 2dr?s?

for sufficiently larged ands.

Combining the above arguments, we have the upper bo(#t rs.

To obtain better upper bound, we use Ifdang’s inequality: SincdR’ is cho-
sen from{-1, 0, +1}9xm uniformly at random, for anys, which is any entry of
RP, we have thatS| > t+/s with probability at most 2 exp(2t?/r?). Setting
t = w(r y/logn) and taking a union bound over all entries BR, we have that
IPR]| < tVsdwith overwhelming probability. This shows that

IS < IVIZ + IPII? < (Vsd- t + 1)? + r?s = O(sdf)

and thus we have the upper bour@d- w( +/logn) with overwhelming probability.

10.3.3 The Second Construction

Theorem 10.3.3Alwen and PeikerfAP09). Lets > Oandr > 2 be any constant.
Letmy = my(n), mp = mp(n), m = my+mp, andqg = q(n). Letl denotdlog, (q — 1)].
There is a probabilistic polynomial-time algorithBExtLattice2 that, on inputl”
and uniformly random matridA; € Zg“™, outputs a pair(A = [A1|Az],S) €
Zg"x Z™M Ifmy > d = (1+6)nloggandny > my - |,

o Ais (my - g°"2)-uniform overzg™,
e Sis a basis oA+ (A), and
e |9 <2rvm + 1.

Description: The basic idea is we mak& contain the columns oH’ =
[hi,....hy,] = H = Iy This drastically reduces the norm Bf We again start
with a construction oB;

B =diag(T, ..., Ti, Imp—my1)-
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We note that
B = dlag(l—l_l, e ,Tl_l, Imz_ml.|).
We next splitW andG into my + 1 matrices wher&V = [WW)| .. |w(m™)|Q],
G = [GW]...|6M)|0], andW®,GK e z™X for anyk € [my]. Let WK =
[W(lk), .. ,Wl(k)] andG® = [g(lk), o gl(k)]. Notice thatG® = w® . T-1, Letvvﬁk) be

a reverse-ordar-base decomposition df, that is,h], = 3 < r"ngk). Then,

g = > - = by,
jelll
Using this construction, makin@P = H’ = H — | ,,, is again straightforward; The
j-th column of P picks uph'j in G. More precisely, leP = [py,..., pm] and let
pj = iy fori € [my].

Length of S: The norm ofSis max||Si|, ||}, whereS; = [V; Pl and S, =
[D; B].

We start to estimate the norm 8f. Recall that = G+ RandD = UB =
GB + RB. We have thaliGB|| = [[W|| < y/my(r — 1). We also havéiR|| < vd and
thus||RB|| < (r + 1) Vd. Hence||DJ| < ||GB]|| + ||RBJ| < AVm(r-1)+(r + 1)Vd <

2r /.

IS2012 < IDIR + [IBI? < 4r2my + 12 + 1 < (2r)2(my + 1)

for suficiently largem.
Next, we estimate the norm &. Simply, we have thatP|| = 1. Then, we
also have|RP|| < Vd. Hence, by the triangle inequality, we have that

VIl < Vd+1
This indicates
ISUR < VI +IPIZ <d+2Vd+1+1<(Vd+2Z2
Combining the above arguments, we have the upper bouyd2 + 1.

10.3.4 The Third Construction

Theorem 10.3.4JAP09). Lets > 0andr > 2 be any constants. Lety = m(n),
mp = mp(n), m= My + My, andq = g(n) with g odd prime. There is a probabilistic
polynomial-time algorithmExtLattice3 that, on inputl” and uniformly random
matrix Ay € Zq“™, outputs a paif(A = [A1|Az],S) € Zq 2 x Z™™. If my > d =
(1 +d)nloggandm, > (4 + 25)nlogq, there is a constan® > 0 such that

o Ais (mp - q~*"?)-uniform overzZ?,

e Sis abasis ofA5(A),

e ||S| < Cnlogq with overwhelming probability, and

e |IS| < 1+ CVd = O(+/nlogq) with overwhelming probability.
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Description: Roughly speaking, the construction is similar to the construction 1.
The basic idea is implanting another mathk into G to shorten the norm o,
where rows ofM is orthogonal.

We recall the definition oB in the construction 1;

B = dlag(T|1, ooy Tlml’ Imzfs),

wherel; = [log, ¢i] ands = ¥ic[my li-
We next splitw andG into my + 2 matrices;

W = W, W™ M|0] and G = [GY)]...|GM™)M|O],

wherew®, G e z™x! for anyk e [my]. We defineM later. As in the construc-
tion 1, Ietwi(ﬁ) = 1 wheni = kandj = 1, and 0 otherwise. Then, we have that

gi(f‘j) = rJ wheni = k, and 0 otherwise.

We next defineM € Z™*W, Let w be the largest power of 2 in the range
[d, m; — 2nlog, g]. By the hypothesis, we have, — 2nlog, q > 2d. Thus, there is
a power ofw in the range. Notice that > mp/2 — nlog, g > np/4. The matrixM
is zero in all but its firstl rows. The firsd rows of M are set to be th€’ multiple
of d distinct rows of a square Hadamard matrix of dimensiorNote that, by the
Sylvester construction, we always haver @&y w Hadamard matri>H§’ 'ng, where
Ho =[1,1;-1,1].

The matrixP is defined as the same way to the one in the construction 1.

Length of S:  The estimation of|§|| is obtained by the almost same way to the
one of the construction 1.

We omit the estimation of the length 8f since this needs a somewhat compli-
cated analysis on the singular values of random matrices. For the details, see the
original paper/APQY9.

10.4 The Sampling Algorithm

Theorem 10.4.1([GPVO0§). There is a probabilistic polynomial-time algorithm
SampleD that, given a basi§ of an n-dimensional latticeA, a parameters >
ITIl - w(+/logm), and a centerc € R", outputs a sample from distribution that is
statistically close tdDy sc.

We note that the algorithrBampleD is indeed the same as Klein's one, as
Lyubashevsky pointed out.

The core of the algorithm used the acceptance-rejection melie81]
Dev8€. Hence, we first review it.
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10.4. THE SAMPLING ALGORITHM

10.4.1 The Acceptance—Rejection Method

We recall the acceptance—rejection method, the one of the basic methodologies
for sampling from non-uniform distributions. This technique is formalized by von
NeumannN57].

Suppose that we want to sample values according to a distribétaer S.
Assume that we can sample values according to another distritmtoear S. If,
for anyx € S, we havef(x) < cg(x) for somec > 1, we can use the acceptance—
rejection method in order to sample froimThe algorithm is as follows:

1. Samplex « gandu « (0,1).
2. If u< f(x)/cg(x), outputx. Otherwise outpud..

In order to simplify the notation, we defirgx) = f(x)/(cg(x)) in this subsection.
Let D" denote the distribution of the output of the above algorithm usif).
D"(x) denotes the probability density function of the distributi@h

For a random variable < (0, 1) andx € S,

fQ)] X _fx
cg(x)] = Pr[u | X = x| = ——= = h(X).

P{US o) o)

Thus,
f
D"(x) = cg((xx)) o) =& (xes) |
1-1/c (x=1)
Therefore, the distributiori coincides with the distribution of the output condi-

tioned on that the output is nat
The correctness of the algorithm when repeatéiches is summarized as fol-

lows:

Lemma 10.4.2. Consider the following algorithm:

1. Initializei « 0.
2. Samplex « gandu « (0, 1).
3. If u< f(x)/(cg(x)), outputx. If i > r output.L. Otherwise go to Step 2.

Let D denote the output distribution of the above algorithm. Then,

A(D, f) = (1— %)r

Proof. Sincef coincides with the conditional distribution given that the output is
not L, we have that

sz{ﬂ—ﬂ—ﬂdﬁm (xes)
a-1/c) (x=1)
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To ease of notation, létdenote (1- 1/c)". We obtain that

A(D, f) = %f;SU{L}lD(x)— f(X)] dx

_ %(D(J_) ; fxes ID(X) - f(x)|dx)

1
=3 (5 + fxes(l - 6)f(x)dx)
1

:—-2 =
5 0 =0,

which completes the proof. ]

10.4.2 Sampling over a One-Dimensional Lattice

The starting point is a sampling algorithm over a one-dimensional lattice.

Algorithm 1 SampleZ
Require: 1",s>0,ceR
Ensure: X « Dzs¢

1. X<~ ZN[c—stc+ s

2: U« [0,1]

3: if ps(x—c) < uthen

4:  return x

5: else

6: goto Step 1

7. end if

The following lemma ensures that the sample frDmsc falls in the range
[c - st ¢ + sf] with overwhelming probability ift is suficiently large.

Lemma 10.4.3([GPVQ{). For anye > 0, anys > n.(Z), and anyt > O,

1+
Pr [[x-cl>tg <2- e, exp(nt?).
X<—DZ,S,C 1_ €

In particular, for e € (0, 1/2) andt > w(+/logn), the probability thatx — c| > tsis
negligible inn.

The correctness of the algorithBampleZ is summarized as follows, which is
obtained as the corollary of the above lemmas:

Lemma 10.4.4([GPV0q). For any0 < € < exp(-x), anys > n.(Z), andc € R,
andt(n) = w(+/logn), SampleZ terminates withirt(n) - w(logn) iterations with
overwhelming probability, and its output distribution is statistically closBigc.
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10.4.3 Sampling over Arbitrary Lattice

The algorithmSampleD take a sample fror, sc. Its procedure is recursive one
and can be interpreted as randomized nearest plane algorithm. Indeed, if we change
the line 4 inSampleD, the algorithm is the nearest plane algorittBab8¢.

Algorithm 2 SampleD
Require: a basisT of an n-dimensional latticeA, a parametes > 0, and a
centerc € R"
Ensure: X < Dj sc
1: V, « Oandc, < C.
2: fori=nto ldo
3 ¢ « (¢, )/l e Rands « g/|lti| > 0
4.z « Dzgc (thisis done by; « Samplez(1", 5, ¢).)
5. Ci_1 < G —ztjandvi_1 <« Vv + zt;
6: end for
7: return Vo

From the construction_; « Vi + zt;, the output vector = vy is a lattice
vector.

For the consistency, we include the proof by Gentry et al.. They prepared two
lemmas.

Lemma 10.4.5(Lemma 4.4,IGPV0{). For any(T, s, ¢) and any outpuv = vp =
Yiein 4ti € A of SampleD,

V-C= Z(Z‘ - o).
ien]

Proof. Fori € [n], let us define projections; : R" — span(y,..., tj). We will
show that forallj = 0,...,n,

(Vo - vj) = mj(cy) = D (@ - )i
€[]
It holds in the case where= 0 trivially. Hence, suppose that it holds fpe= k-1
for somek € [n]. By the construction, we hawg = vi_1 —ztx andcg = Cx_1 + Ztk.
In addition, we have thalffj||°c/ = (c, t). Therefore, we have that
Vo — Vic — mi(Ck) = Vo — (Vi1 — Zeti) — (mi-1(Ck) + Ci i)
= (Vo — Vie1) + Zktk — (mien(Cier) + i1 (Zti) + Cpti)
= (Vo — Vi1 — k-1(Ck-1)) + Z(tk — me—1(tk)) — il
= (Vo — Vk-1 — mk-1(Ck-1)) + (2 — G Tk
= Z(z - )i
ie[k]

By the induction, we have this equationjir- k and complete the proof. m|
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Lemma 10.4.6(Lemma 4.5, (GPV0§). For any input(T, s, c) and any output
V = Vo = Yien 4ti € A of SampleD, the probability thatSampleD outputsv is
exactly

1
psc- | | @

iefn]

Proof. The vectow is output if every random choicg = z fori =n,..., 1. LetE
denote this event. For eaclthe probability thag = z, conditioned org; = Z; for
allj=n,...,i+1isDzg¢(2). Hence, the probability o is

 licqnprsc(2)
D ) = e
l_[ 25.(2) [Tietn ps.¢(Z)

iefn]

The numerator is

[ [psc@ =] [pst@-c) -1 = ps(Z(z - c;)fi] = ps(v—©) = psc(V),

ie[n] ie[n] e

where we usg = s/|Itill and the orthogonality of. This completes the proof.o
Finally, they proved the following theorem.

Theorem 10.4.7(Theorem 4.1,/GPV0§). Given a basisT of ann-dimensional
lattice A, a parameters > ||T|| - w(+/logn), and a centerc € R", the algorithm
SampleD outputs a sample from a distribution that is statistically clos®}gs c.

Proof. Let s > |T|| - g(n) for someg(n) = w(+/logn). Then, we have thad' =
s/lltill > g(n). ByLemma Z.Lwe have that.(Z) < bl(Z)- logn(1 + 1/€))/x <
Jiog(2n(1 + 1/€))/x. Thus, by setting(n) = 2-°@° M) = negl(n) appropriately,
we haveg(n) > 7.(Z) and eachs > 1.(Z). Hence, thesampleZ implements the
oracleDz,g ¢ within negligible statistical distance.
We show thaSampleD usingDz ¢ » samples to withing negligible statistical

distance 0Dy s¢. LetQ = psc(A). Then, the probability function afunderDy s

is psc(v)/Q. Meanwhile[Lemma 2. T.Tmplies that

ps.c(@) € [5£.1] - p5(2)

for any valuec|. By the above lemma, for every € A, the probability that
SampleD outputsv is in the range

RT-[1, (% " psc SR [L1+€] pscV),

whereR = [[ign ps (Z) ande’(n) is some negligible function of. This shows that
Re[1,1+ €]Q and the distance is at masy/ 2. |
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10.5 Lattice-Based Collision-Resistant Preimage Sam-
pleable Function

We now return to the lattice-based collision-resistant PSFs. Gentry et al. showed
the scheme combining Ajtai's trapdoor generation, Ajtai’s hash functions, and
the sampling algorithm in the previous secti@e€iion 10} is indeed collision-
resistant PSFs (statistically).

Scheme 10.5.{LPSF [GPVO0{).

TrapGen(1"): The same ag&xtLattice3(1") in It outputs @A, T),
where A e Zg*" is statistically close to uniform an@i ¢ Az (A) is a good
basis with||T|| < L = O(+/nlgq). The matrixA defines the functioma(-).
This function is defined aka(€) = Ae modqg with domainD,, = {e € Z™ :
llefl < s+vim} and rangeR, = Zg.

SampleDom(1"): The input distribution izm s. Hence, this algorithm invokes
SampleD with inputsl, s, and0 and outputs the sample.

SamplePre(A, T, s u): The algorithm samples from,*(u) as follows: It gen-
eratest € Z™M such thatAt = u modq by standard algebra, samples—
Dag(a).s-t by SampleD(T, s, —t), and output® = t + V.

We start with several lemmas.

Lemma 10.5.2(Regev, |Reg09). Letm > 2nlogqg. Then for all but an at most
g " fraction of A € ZgX™, the subset-sums of the columnsfofenerateZg. That
is, for everyu € Z, there is an error vectoe € {0, 1} such thatAe = u modq.

Lemma 10.5.3(Lemma 5.2,GPV0§). Assume the columns &fe Zg*™ generate
Zq and lete € (0,1/2) ands > n(Agz(A)). Then fore « Dzm, the distribution of
the syndromer = Ae mod q is within statistical distanc@e of uniform oveizg.
Furthermore, fixu andt € Z™ be an arbitrary solution toAt = u moda.
Then the conditional distribution & < Dzm s given Ae = umodgq is exactly

T+ DA&(A),S,—I'
Lemma 10.5.4([GPV0q). Letn andq be positive integers with prime, and let
m > 2nlogg. Then for all but an at mosg™ fraction of A € Zg*™, we have
AT (Ag(A)) = /4.

In particular, for suchA and for anyw(+/logm) function, there is a negligible
functione(m) such thaty(Ag(A)) < w(+/logm).
Corollary 10.5.5 ([GPV0§). Letn andq be positive integers with prime, and
letm > 2nlogg. Then for all but an at mos2q™" fraction of A € Zg™ and for

anys > w(+/logm), the distribution of the syndrome= Ae modq is statistically
close to uniform ovezg, wheree « Dzms.

By using these lemmas, we can proof the securityRSF.
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Theorem 10.5.6([GPV0{). The above schemiPSF is collision resistant if
SIS, m2sym is hard andm > (5 + 30) log g for some constant > 0.

Proof. We note thats > L - w(+/logm) > n.(Ag(A)) for some negligibles(n) by
Cemma ZIIsincel > [[T]| > bI(A(A)).

Next, a sample « Dz s falls into D,, except with negligible probability by
Furthermore, for all but g™ fraction of A, ha(e) is statistically

close to uniform oveR, = Zg by[Corollary 10.5.5

The preimage sampleable property follows fran> |T|| - w(+/logm),
[Cemma 10.53and the correctness &ampleD (Thearem 10.4)7 The samples
from a distribution is statistically close IDAé(A),S_t and the conditional distribu-
tion of e « Dznsgiven Ae = u (mod q) is exactlyt + Dy (a) s-t-

The collision resistance property immediately follows from the hardness of
SISymas v

The preimage min-entropy is at least 1. This follows the fact that the preim-
ages are distributed accordingtte Dag(a).s-t and the min-entropy dDAg(A),&_t

is at least — 1 (sedLemma 2.1. 1} O

10.6 Ideal-Lattice Version of the Alwen-Peikert Con-
struction

In order to obtain the ideal-lattice-based collision-resistant PSFs, we need to
an ideal-lattice version of the Ajtai algorithm, which is proposed by $thetl

al. [SSTX09. The core idea is dividing each matrices imdy n submatrices

and letting them to be rotation matrices corresponding to polynomidtsqn

Quick remainders on polynomials and rings: For a monic polynomiaf of
degreen which is irreducible oveE, we defineR = Z[X]/(f). For an integeq and
suchf, Ry g denotesZq[ X] /(f).

The number of units iR 4 plays an important role for regularity (sicl
ffion 4.4.3. Hence, we quickly analyze the number. For any integand any
monic polynomialf, we havelR I/IRtql > TTicg(1 - (6(q)/)?96)), whereg()
is Euler's phi function and = [Jiey fi is the factorization of overZgy. If f
is invertible overZgy, we have> 1 - (¢(g)/q)". If qis an odd prime and is
completely split oveZq, we have> (1 - 1/g)". If gis an odd prime, we have

IRf o/ IReal = TTien (1 — a~9e90),

10.6.1 The Steh#—Steinfeld—Tanaka—Xagawa Construction

Stehk, Steinfeld, Tanaka, and Xagaw&8TX09 proposed the ideal-lattice version
of the Alwen—Peikert construction.

Let M+(&) denote the modulg € R" | & = 0 (modq)}. We will construct
the basisT of the module. Let us consider the following construction: We first
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compute a basik of M+(a). This basisF is not short. Hence, we then construct
a unimodular matriXQ such that a basiS = FQ is short. PreciselysS has the
following form as in the Alwen—Peikert construction:

M AR

S F Q

V D
p B}_Oand

& =]

By construction, we have that
aH+20=0 (modg)andaU +alm, =0 (moda).

Thus, B
ayH =0 (modq)anda, =-a;U (modq).

In the Alwen—Peikert construction they ddtto be the Hermite normal form of
Ag (A1), however we cannot define the Hermite normal form of a bisiga)
in the case wheré is reducible oveZy. This is overcome later and we suppose
some matrixH, a basis oM+ (a;) . By settingU = G + R, with G to be defined
later on andR a random matrix, we have thap is almost uniformly random by
Micciancio’s regularity lemma instead of direct applying the leftover hash lemma.
More precisely, the columns & is chosen from{1, 0, 1}M)9 x ({0}")™4,

According to the structure @&, we have that

D=(G+R)BandV = -H + (G+ R)P.

The matrixG will be designed t&GP = H, — I4. So, we letV = RP - I,,. Note
thatD = GB + RB. We letW = GB.
Formally, we will show the following theorem.

Theorem 10.6.1(Main Lemma, rearrangedSETX09). There are probabilistic
polynomial-time algorithms with the following properties. They takes an odd prime
g and integersn, o, d, my, and m,. They also takes a monic and irreducible
polynomialf € Z[x] of degreen and random polynomiala; € R;"é whereRs g =
Zg[X]/{f). Letf = [1igy fi be the factorization of overZq. We letk = [1 +logq[],

A= \/—1 + [Tiepg (1 + (3%)d99¢i)), andm = my + mp. The algorithms succeed with

probability Psucc > 1— prail Overay, wherepgi = (1 - [Tiegg(1 - q‘degfi>))”. When
they do,

1. The distance to uniformity @ is at mostpz,j + MpA.
2. The quality ofSis as follows:

e If my > maxo, «,d} andmy > «, then||Rot(S)|| < EF(f, 2)- V2kdY/2n32.
Additionally, |Rot(S)|| < EF(f,2) - V3axd - n with probability 1 —
2-a+0lognmid) for g super-logarithmic functioa = a(n) = w(logn).

e If My > maxo, «,d} andm, > «- my, then||Ro&(S)|| < EF(f, 2)- (4 Vnd+
3).
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3. In particular, forf = x>+ 1withk > 2and a primeg withq = 3 (mod 8) the
following holds:

e We can set- = 1 andr = [1+logzq]. Then, the error probability is
Prail = g~ and the parameten is 2=,

e If m,mp > «, then||Rok(S)| < V6axd - n = O(+/anlogq) with proba-
bility 1 — 2-a+Clog(hm logq) for 5 super-logarithmic functiom = a(n) =
w(logn).

o If my > kandmp > «x-my, then||Rok(S)|| < V2(4vVnd+3) = O(4/nlogq).

For the sake of notation, we name the algoritrxdidLatticel for the case
whereny > « andExtldLattice2 for the case wherey, > M.

We follow the Alwen—Peikert construction in whichs fixed to 2. Letm; >
k = [1+logqg] andm = my + mp. Given random polynomiald; = (as, ..., am,),
we should construct random polynomiaswith a basisS of M+(a), wherea =
[a1]42]. We need an Hermite normal form bf+(a;). However, iff is not invertible
in Zq, we cannot define the Hermite normal form oWf,. This circumvent is
overcome with a simple idea: Use of an HNF-like matrix.

Construction of H without Hermite Normal Forms: At first, we note that the
one ofg; is in R with probability at least - p,j, sincemy > o. Leti* denote
such index. For now, we sét = 1 for simplicity. Although we have no definition
for the HNF, we can construct the following HNF-like basis= {h; j}i je[m,;] Of
M+(&p): The first column igji; and thei-th column ishjiy + 4 fori = 2,..., my,
whereiy; is a column vector iIRfml such that the-th element is 1 and others are 0,
andh; = —g ® ail mod q such thah; € [0, q)". lllustratively, we have

q h2 e hml_l hml

1

By the construction, we have the following lemma.
Lemma 10.6.2. The matrixH is a basis oM+ (a;) I%"l.

Proof. Let h; denote the-th column ofH. By the definition ofH, 3 H = 0
(mod ). Hence H ¢ M*(&y). Itis obvious thahy, ..., hy, are linearly indepen-
dent overRy.

In order to verify thatH is a basis of the module, we need to show that, for
eachy € M+(a), there exists a vectat € Rfm1 such thaty = HE. Since the
columns ofH are linearly independent, there existss (Q[X]/{f))™ such that
y = HC. Hence, it is remaining to show e R?‘l. The equatiory = HC implies
thaty; = qci + 2{212 hi®ci andy; = ¢ fori = 2,...,m. Sincey; € R fori € [my],
we have thatj € R fori = 2,...,m andgc; = y1 — Zi":‘lzhi ®YVYi € R. By the
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assumption ory = (y1,...,Ym), We have thafimja ® yi = 0 (modq). In
addition recall that the definition ¢f = —a ® a{l (mod q). Hence, we have that

my my
gca Eyl—Zhi ®Yi = Y1+all®(zai ®yi]
i=2 i=2

m
= a11®{a1®y1+2a,- ®yi] =a;'®0=0 (modq).
i=2

Thus,c; € R and we conclude that is a basis oM+ (a,). O

Next, we consider the case whetex+ 1. In this case, we swap the columns
1 andi* of A; and call ita;. Applying the method above, we obtai, a basis
of M*(&)). Again, swap the columns and the rowstf we obtainH, a basis
of M+(a,). In the following, we denote by the indexi such thatg € R;"q and
hij = q.

Preliminaries of the constructions: Hereafter, we setV = GB. We often use
the matrixT, = {tjj} € I%XK, wheret;; = 1,tjj.1 = —2, and all othet; ;'s are 0.
lllustratively,

0 1 2 . k-1 0 1 2 k-1
(1 -2 ] 1 2 2 21 ]
1 -2 1 2 2«2
T, = 2 1 , Tl=12 1
: .o=2 : 2
k=1 | 1 ] k-1 | 1

We can verifyT 1 is the inverse oT, by a multiplication of them as in the Alwen—
Peikert construction.

10.6.2 An Analog of the Alwen—Peikert Construction 1

We start with a construction d&&; we set

[T« © a_ [Tt o
B_[O 'mz—K]’ ° _[O 'mz—J’

We next seW = [§i-0... 0] € R™*™. By the construction ofV, we have
thatG = [i- 25 ... 2% 0... 0] € R™™, sinceG = WB™. Notice that the
columns ofH — I, except tha*-th row are all zero vectors, while theth row is
[h1,..., N1, i =1, hj=yq, ..., hm, ], whereh;- — 1 = g— 1. Using this construction
and the above fact, makil@P = H — |, is straightforward; LetP = {p;j} €
R™™. We letpij € {0,1)" for i € [«] and j € [my] such thathj = Ficq 2~ 2pi,;.
In addition, fori = « + 1,...,mp and forj € [my], let p;j = 0. We then have
GP=H - Ip,.
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Length of S The norm of Ra{(S) is maX||Rot(S1)ll, IR0k ()|}, whereS; =
[V; P]andS, = [ D; B]. The estimations are the same as that in the Alwen—Peikert
construction, we omit them.

10.6.3 An Analog of the Alwen—Peikert Construction 2

The idea in/APQ9 is to haveG contain the columns dfl — |, . This helps decrease
the norms of the columns & andV.

To do so, we again start with constructiorBafRecall the inequalityp, > «my.
Define B be the matrix of the form

T, T

I My—kMm, I Mp—kIMy,

Let h; denote thek-th column ofH — Im,. Recall thath; = hy ® §i- for some
hgin [0,q-1)".

Let us consideGy = {gi(’kj)} andWy = {wi(f‘j)} in R}’WK for k € [my]. We have
Gy = W - T;l containﬁ’k. In order to do so, we IeNfi‘?i € {0,1}" for j € [«] such
thathy = X e 2K‘jwff)j andwi("‘j) = O0fori # i*. Then, the last columns @ is
h.

Let G = [Gy]... |Gm1|O]Vand W = [Wq]...[Wn|O]. The matrix P =
[P ... Pm] picks all columnshy, ..., hy, in G by settingp; = i,j € Rf‘m2

Length of S: The norm of Ro{(S) is maX||Rot (S1)|], IR0k (S)l}, whereS; =
[V; PlandS; = [D; B]. For simplicity, we only consider the case whére x"+1.
In the general case, the bound|iot (S)|| involves an extra EF(2) factor.

We have thatjRot(GB)||*> = ||Rok(W)||? < n, since the entries 8V are all 0
except tha*-th ponnomiaISNi(!f’)j which are in{0, 1}". As in the previous construc-

tion, we have|Rot(RB)||*> < 9nd. Hence, we obtain that

IR0t (S)II? < [IRok(D)II? + IR0k (B)I < IRot(GB + RB)|I? + [[Rot(B)|[?
< (3Vnd+ vn)? +5< (4Vnd + 3)%.

It is obvious that|Rot(P)|| < 1. In addition, we have thatRot(PR)|> < nr.
Therefore,

IR0t (Sl < [IRok(V)II? + IR0k (P)II* < [IRot(RP - 1)|I? + IR0t (P)|[?
<(Vnd+ 12 +1< (2Vnd+ 272

which completes the proof.
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10.6.4 Discussions

We left the problem to construct an analog of the Alwen—Peikert construction 3,
which employs the rows of the Hadamard matrix to take a balance on the lower
bound ofm, and the norm of the Gram—-Schmidt orthogonalized basis. The dif-
ficulty is finding the analog of the Hadamard matrixFiP?l or the rows that have
mutually orthogonality.

10.7 Ideal-Lattice-Based Collision-Resistant Preimage
Sampleable Functions

By replacing the trapdoor-generation algorithm, we obtain the ideal-lattice-based
collision-resistant PSR&PSF.

Scheme 10.7.{ILPSF [SSTX09).

TrapGen(1"): It invokes ExtldLattice1(1") (or ExtldLattice2(1")) and obtains
(4 T). It outputs &, T), wherea e R}f‘q is statistically close to uniform and
T’ = Rok(T) c Ag(Rot(d)) is a good basis WithT’|| < L. The row vecto@
defines the functiohy(-). This function is defined d%;(e) = Ro%(a)-e modq
with domainD,, = {e€ Z™: ||gl|, < slogm} and rangeR, = Zg.

SampleDom(1"): The input distribution is Dzms. It invokes
SampleD(l mn, S, 0) and outputs the obtained sample.

SamplePre(a, T, s,u): The algorithm samples froringl(u) as follows: It gen-
eratest € Z™ such that Rg{a)t = u modq by standard algebra, samples
V < D (Rot(3)).5-t by SampleD(T’, s, —t), and outputg =t + V.

In the following, we fix the polynomidl = x"+1 withn = 2¢ > 32. In addition,
we fix g to be a prime withg = 3 mod 4. We let denota; = Ag(Rok(d)) and
Aq = Aq(Rot(a)).

We again start with several lemmas.

Instead ofLemma 10.5.Rve use the following lemma.

Lemma 10.7.2.Letm > 3. Then, for all but an at mog™" fraction of &, the
columns oRot(a) generate<q.

Proof. By the condition off andq, the row vectora containsg; € Rf*q with proba-
bility at least 1- (2g7"2)™ > 1 — g". This completes the proof. o
Notice that we can appliyemma 10.5.3n our case. However, we cannot apply

[Cemma 10.5Mdirectly in our case. Instead of the lemma, the following lemma
ensures that for all but negligible fraction af we havei;°(Aq) > g/4 and thus,

for sucha and for anyw(+/logmn) function, there exists a negligible functien

such thaty(Ag) < w(+/logmn).
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Lemma 10.7.3(Lemma 5,[ESTX0Y). Letm > 8logg. Then for all but an at most
g " fraction ofa € R}“q, we havel’(Aq(Rok(a))) = q/4.

For consistency, we include the proof, which is due to @tednid Stein-
feld [SS09. Before the proof, we should note the curious propertly ofx" + 1.

Reciprocal polynomials: For a polynomiala = ¢y aix~1, Rok(a) is nega-
cyclic matrix: Hence, we have the following relation on transpose operator.

a -a, ... —a aa a ... an
Rov@ =" . C|andRa@=[ 0 T T
an a1 ... a —ay -az ... &
Let us considea(1/x), that is, ¥icr aix (7. Sincex (= = —x' in Ry, we have
that
a+aXx trorax Do —axt o —axdt =g —axt - —apx™t

Now, we set red) = a(1/x), a reciprocal polynomial od. Using this notion, we
have that
Rot(a)" = Rot(rec@)).

Obviously, the mapping rec is a bijection oWrandR; q.

Returning to the proofs:

Proof. By our presupposition, we have tHat f;-f> overZy wheref; is irreducible
in Zq[x] and can be writtefy = X2 + ;x4 — 1 for somet; € Zq.

Lets e R g andv € Zg'"". We want to bound the probability that (RGY)" -s=
vwhena « R{” Since Roft(a)T Rot(rec@)) and the mapping rec is a bijection
overRy g, we mstead bound the probability tha® s = Vfor v e R;“ Let us define
the mapgs that mapsato a® s. The probability is[ ] e[ Praj(_R,q[qbs(aJ) =vjl.

The case whergandf are coprime:Sincegs is a bijection in this case, we have
that Pg;r [#s(aj) = vj]is g™
The case whers andf are not coprime:In this case, we have = f;s' for some
i € {1,2} ands’ € Zq[X] of degree smaller than/2. If v; is not of the formfivi for
somev’j of degree smaller tham/2, then Pg [¢s(a;) = vj] = 0. Otherwise, since
the kernel ofps is of cardinalityq™?, we have Pg[¢s(a)) = vj] = /2.

Taking the union bound over all non-zero polynomesRs 4 and the vectors
Ve Rf such that|Vl|l. < q/4, the probability that we havé’(Aq(Rot(a))) < q/4
is upper bounded by

2 2 Ptss@=vi+2) > []Plss@=vy.
seRpq veR?‘ je[m] SR g \“/eR?jq je[m]
ged@f)= 1|\v||m<q/4 f1lS |Vl <q/4
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The first term is upper bounded lof(q/2)"g ™" = 2-Mg"™™™"N | et N be the
number ofv € Ry 4 such that|v|l.. < /4 andv = f;v’ for somev’. Thanks to the
shape of; = X2 — ;x4 + 1, the latter conditions imply th&v”’|l.. < /4 where
V" € Zq[X] is the vector made of the/4 lower degree cdicients ofv’. Hence, we
have thatN < "2/2V4, Therefore, the second term is at mogt/2N™g-""?2 =
2qn/22—nm/4_

This argument shows that the probability we have the short vectarre-
sponding tov in Aq(Rot(&)) is at most

2—mq—mn+m+n + 2qn/22—nm/47

which is negligible whemm = 2(1+ 6)logqg. In particular, if we setn = 8logq,
the probability is at most

q—n—(mn+8—m—2n) + an/Zq—Zn < q—n.

We can show the following corollary.

Corollary 10.7.4. Letm > 8logq. Then for all but an at mostq" fraction ofa €
Rr g and for anys > w(+/logmn), the distribution of the syndrome= ae modq
is statistically close to uniform ove o, whereé = € < Dzmns.

Proof. By CLemma 10.7.PandCemma 10.7.Bfor all but a 21" fraction of all 3,
the columns of Rg(&) generateZg ands > n.(Ag) for some negligible function
e(mn). Now by[CLemma 10.5.Bthe distribution ofu = aé = Ro%(a) - emodq is
statistically close to uniform ove q. O

By using this lemma, we can proof the securityld?SF.

Theorem 10.7.5([SSTX09). Letf = X"+ 1andn = 2¢ > 32. Letmandq be
integers withg prime,q = 3 mod 4 andm > 41logg. Then, the above scheme
ILPSF is collision resistant if -SIS, 1, o5y IS hard.

Proof. We note thats > L - w(+/logm) > 776(1\3) for some negligibles(n) by
Lemma Z.Li&incel > |[T'] > BI(AS).

Next, a sample « Dzmn ¢ falls into D, except with negligible probability by
Furthermore, for all but a2" fraction of A, ha(e) is statistically
close to uniform oveR, = Zg by[Corollary 10.7.4

The preimage sampleable property follows fran> |T|| - w(+/logm),
[Lemma 10.5.8and the correctness &ampleD (Theorem 10.4)] The samples
from a distribution is statistically close 0, st and the conditional distribution
of e « Dzm s given Rot(d)e = u (mod q) is exactlyt + Dag.s-t-

The collision resistance property immediately follows from the hardness of
SISg,)rTl,Zslog mn Of f_SISJ,mlS\/W‘

The preimage min-entropy is at leash— 1. This follows the fact that the
preimages are distributed accordingteD,. st and the min-entropy dDa- st
is at leasimn— 1 (sedlemma Z.1. T} m|
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10.8 On “Bonsai” Notions

Peikert Pei09l) compared the generations of the random latticeo controlling
growths in Bonsai. Let us figure out what idansai tree Imagine the binary tree
{01} and the path. Let Ay € Z§*™ and Ai(b) € Z™fori € [I] andb € {0, 1.
Then, for anyu € {0,1}!, we defineA, = [A0|A(1"1)| . |A|(“')]. This construction
indicates aierarchy of trapdoor functions

The legitimate user has a trapdoly of Ag and generate randomi(b), which
is undirected growth It then has, for any € {0,1}', a trapdoorT, for A, by
extending control

The simulator crucially usesdirected growth From Ay, it can makesA; with
a trapdoor of Po|A1].

In addition, we can delegate the basis byamdomized controlsee also
[CHKO9)). If one knows a trapdool of A, one can generates a new trapdoor
S of A with a slight loss.

These techniques will be exploited in digital signat{C&gpter 1], public-key
encryption and identity-based encryptig€apter T}

In the following, m denotes the sum ofy, andmy.

10.8.1 Undirected Growth

Let Ay € Zg™ and letA, € Zg™. Let us defineA = [A1]A;]. It is obvi-
ous thatAql(A) is a higher-dimensional supper-lattice mg(A), since, for any
Vi € Ag(As), the vectorv = vy o Ois in Ag(A). Undirected growth is done by
concatenating fresh random matyg onto a givenA;.

10.8.2 Controlled Growth

This was already done by Alwen and Peikert. An arborist can generate a lattice
Ag(A) with a short basis of it fromA; as in the constructions (see Sectiigs3.2

[10.3.3 and10.3.3.

10.8.3 Extending Control

If an arborist knows a trapdodr of A1, then he also knows a trapdoBrof A =
[A1]Az]. We suppose thajis a prime.
Let us consider the following deterministic algoritiExtBasis(T, A) which
will outputsS;
e Forj=1,...,m,lets =tjo0eZ™.
e Forj=1,...,mp, leth; € Z™ be an arbitrary integer solution to the equation
Asb; = —a® (modq), whereA; = [a),..., a2)]. Let sp,.i = by oij € ZM.

It is easy to show the following lemma, which states the ma®ixherits the
quality of T.
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Lemma 10.8.1(Lemma 3.2, [Pei09K). The algorithm runs in polynomial-time
and outputs a basiS of AqL(A) such thai|S|| = ||T]].

10.8.4 Randomizing Control

We finally review how to randomize the basis of a superlattig:(eA). This control
also appears in Cash, Hofheinz, and Kil&{KO09] with a name, delegation of a
basis.

Let us consider the following probabilistic algoritiRandBasis(T, s) which,
given a basisT of somem-dimensional latticeA and a parametes > Tl -
w(+/logn), outputs a new basBof A;

1. Fori=1,...,m,

(a) Generatev « SampleD(T,s). If v is linearly independent of
{v1,...,Vi_1}, then lety; = v and increment. Otherwise, repeat this step.

2. Let T’ be an HNF ofT. OutputS « MGReduce(T’, V).

It is easy to verify that Step 1 takes at m@i?) times with overwhelming
probability. On the quality]|S| < s- vm with overwhelming probability, be-
causev distributes according to the distribution statistically clos®fgs by[Theot
[rem 10.4.Vand the norm bound

10.9 On “Miniature Bonsai” Notions

Here, we apply the above technigues to the ideal-lattice-based constructions. In the
following, m denotes the sum ofy, andm.
10.9.1 Undirected Growth

Letd; € R;“q and letd, € R;“Z Let us definéd = &;0&,. As in the previous section,
it is obvious thatMy (3) is a higher-dimensional supper-moduleM (1), since,

for anyé € Mg (&), the vecto = & o Oisin Mg (A). Undirected growth is done
by concatenating fresh random vecronto a giverﬁl.

10.9.2 Controlled Growth

An arborist can generate a modNg; (&) with a short basid of it from & as in

the SSTX constructions (sEection 10}

10.9.3 Extending Control

If an arborist knows a trapdodr of &;, then he also knows a trapdo8rof & =
é.]_ ] é.z.
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Let us consider the following deterministic algoritintidBasis(T, A) which
will outputsS = [§,, ..., &;

e Forj=1,...,m, let§; =fjoée R™.

e Forj=1,...,m, let Bj e R™ be an arbitrary integer solution to the equation
ab; = —aﬁz) (mod q), where#, = [&2,...,a{)]. Let &.j = bj o ij € Z™

[cfmma 10.8 which states the matri® inherits

Itis easy to show the analogu
the quality ofT.

Lemma 10.9.1. The algorithm runs in polynomial-time and outputs a beisf
Mg (&) such that|Rok(S)|| = [IRo(T)II.

10.9.4 Randomizing Control
We can usé&andBasis appeared if5ection 10.BHence, we omit the details.

10.10 An Application: Trapdoor Hash Functions

Introduction:  Trapdoor commitments (or trapdoor hash functions) appeared first
in Brassard, Chaum, and &reaulBCC8§, under the name “chameleon blobs”, in

the context of zero-knowledge proofs and arguments. They are underlying prim-
itives to construct complex cryptographic schemes and have many applications,
zero-knowledge proofs, arguments, signatures, universally composable commit-
ments. See Fischlin’s thesiBig0]] for the details of trapdoor commitment (which

is a generalized notion of trapdoor hash family).

Here, we intend to discuss non-interactive one, a trapdoor hash family as
known as “chameleon hash function&R00]. We mainly adopt the definition of
trapdoor hash functions by Shamir and Tauman (KalaisindJ], however, their
definition depends on the number-theoretic assumptions: they require uniformity
of hash functions.

Let us confirm the definitions ifKROG,[STOJ]. Roughly speaking, the scheme
consists of a triple of polynomial-time algorithnrgpGen, Eval, TrapCol); The
generation algorithm, given the security paramefeolitputs &, t), a pair of an in-
dex of hash function, which defines a hash functign M3 X Wh 3 — Ry4, and a
trapdoor corresponding t The evaluation algorithrBval, givena, m € My, 5, and
r € Wha, computesd = hy(m, r); The trapdoor collision algorithriirapCol, given
t, two distinct messagesy # My € My, andri € Ry, outputsra € Ry4 such
thatha(my, ri) = ha(np, rp); As ordinal hash functions, it is required to be collision
resistant: any polynomial-time adversary cannot, given an indeutputs two dis-
tinct messagem # m, and two strings, andr, such thahy(my, r1) = ha(mp, ro),
where the probability is taken over the choiceaft] < TrapGen(1") and the ran-
domness of the adversary. The problemis in the definition of uniformitKROQ]
and [STO1], their requirements are as follows:
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By Krawczyk and Rabin [KROQ]: For any two distinct messages # mp €
Mn.a, the two distribution$i;(my, r1) andha(mp, rz) are computationally iden-
tical if r, andr, are chosen uniformly at random froRj 5.

By Shamir and Tauman [STOT]: If ry is uniformly distributed inA, 5, then the
distribution ofr, output by the algorithnfrapCol is computationally indistin-
guishable from uniform i, a.

These uniformity definitions are violated if we choagsdrom another distri-
bution overW, , rather than the uniform distribution. Hence, we here give more
generalized one, which is very similar to the definition of preimage sampleable
functions inSection 10.2

10.10.1 Definitions
Model of Trapdoor Hash Functions

In order to introduce the other distribution ové,,, we add the algorithm
SampleDom to the scheme. LéiHash = (TrapGen, Eval, SampleDom, TrapCol)
over a message spabk,, a randomness spadé,, and a value spad®, be a trap-
door hash scheme. Notation of the algorithms is below:

TrapGen(1"): A key-generation algorithm, given the security parameteodit-
puts a pair of an index of a hash function and a trapdaa).( An indexa
defines the hash functidn, : M, x W, — R,.

Eval(a,msgr): An evaluation algorithm, givea, a messagensge M, and a
randomness € W,, outputs a diged = hy(msgr) € R,.

SampleDom(1"): A domain sampling algorithm, given the security parameter
1", samples € W, from some distribution ovei,.

TrapCol(a, t, msg, ro, msq): A trapdoor collision algorithm, givem, t corre-
sponding taa, msg, € My, ro € R,, andmsg € My, outputsri € Ry,.

Security Notions

The collision resistance is defined as that in usual hash functionS¢s ,
The hiding property is given below in order to generalize the uniformity in the
previous definitions: IiSampleDom samples from the uniform distribution over
Rn, the definition is just the uniformity.

To define the security notion, consider the experimdipy,,, »(n) and

Expfiiey, #(n) between the challengérand the adversari.

IO

Experiment EXp$.q,, 4 (N):

Setup Phase:The challengeC runsTrapGen(1") and obtainsd,t). The
adversaryA is given the security parametet dnd the parametees
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Challenge Phase:The adversary outputsmsgr), and (nsd,r’). If
msgmsd € My, 1,1’ € W,, (msgr) # (msd,r’), andEval(a, msgr) =
Eval(a, msd, r’) thenC returns 1. Otherwise, it returns O.

?ﬁgsh,ﬂ(n):

Setup Phase:The challengeC runsTrapGen(1") and obtainsd,t). The
adversaryA is given the security parametéet dnd the parameteparam

Experiment Exp

Challenge Phase:The adversary outputsnsg and msg. If (1)
msg,msg € M, and (2)msg # msq, the challenger flips a fair
coinb « {0,1}. If b = 0, C generatesg « SampleDom(1").
If b = 1, C generatesy « SampleDom(1") and obtainsr; «
TrapCol(a, t, msg), ro, msg). C provides (nsg,, rp) to the adversaryA.
If the above two checks are not pass@deturns 0 and halts.

Decision Phase:Finally, the adversary outputs its decisign If b = b’ the
challenger returns 1, otherwise 0.

Definition 10.10.1(Collision resistance)Let THash be a trapdoor hash scheme.
Let A be an adversary. We define the advantagé afs

Adv%—lash,ﬂ(n) = Pr[EXp%-Iash,ﬂ(n) = l] :

We say a trapdoor hash scheniHash is computationally binding if

AdVTLen #(N) is negligible inn for any polynomial-time adversary.

We treat the uniformity as the property of the output distributiohof
Definition 10.10.2(Uniformity). Consider a trapdoor hash scheiftdgash. We
say THash has the (statistical) uniformity if if any messagessg € My,

A((a,d), (&, u)) < negl(n) for some negligible functiomegl(n), where &,t) «
TrapGen(1"), r « SampleDom(1"), d < Eval(msgr), andu « R,.

The property that anyone cannot distinguish the pair of a message and a random
string and the pair output birapCol is now named as the hiding property.

Definition 10.10.3(Hiding). Consider a trapdoor hash schefri¢ash. Let A be
an adversary. We define the advantageiads

AV ) = Pr{Explis, ) = 1] - 3]

We sayTHash is computationally hiding if for any polynomial-time adversafly

Advige. 4 (n) is negligible inn.

10.10.2 Constructions

Fujisaki [Eii08] and PeikertPei09H) pointed out the construction of trapdoor hash
schemes based on lattice problems. These are basedSmwith the flavor of
LNIC.
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In LNIC, an index of the hash function i&8 = [A’|A”] € ZSX(””"W). The
commitmentu = A(mor) = A’‘m+ A”r. What happen if we have the trapdoor
of A”? For any messaga and a committed value, we can sample such that
A’r=u-A'm

Descriptions
Scheme 10.10.4LTHash).

TrapGen(1"): The key-generation algorithm, given the security parameter 1
obtains @', T’) « LPSF.TrapGen(1") with the parametem. Next, it gener-
ates a random matri” « Zg*™. Anindex A = [A”|A’] defines the hash
functionhp : {0,1}™ x D,, — Zg.

Eval(A,w, r): The evaluation algorithm, giveA, a messagmsg= w € {0, 1}™
and a randomnesse Dy, outputs a digest = ha(wo r) € Zg.

SampleDom(1"): The domain sampling algorithm is the same as
LPSF.SampleDom(-). The distribution iDzm s.

TrapCol(A, T, wp, ro, wy): First, it computes a digest= ha(wWgo rg) = A”wp +
A’rp. Then, it computes a half of digest = A”w;. Since,A’ry = U’ —u, it
obtainsr; « LPSF.SamplePre(A’, T’, s, u’ — u). Then, it outputs .

Security Proofs

The security proofs are straightforward. The collision resistance and the uniformity
follow from these ofLPSF. The hiding property also follows statistical one of
LPSF. Hence, we omit them.

Extension

We again extend the domain of messages. As already not&Ridd], the combi-
nation of hash functions and trapdoor hash functions yields this; the new trapdoor
hash functions are in the forif(msgr) = ha(H(msQ, r), whereh, is a trapdoor

hash function andH is a hash function. We note that our metho@eciion 5.3.11

also extend the domain in our case.

An ldeal-Lattice-Based Construction
By simple argument, we can construicthash from ILPSF. We omit the details,
since they are very similar torHash from LPSF.

Remark

We finally note that Kurosawa and HerigHO08] showed the conversion from a
trapdoor hash family to an ID scheme. Their conversion yields the following ID
scheme. The key pair is(t) < TrapGen(1"). The protocol is defined as follows:
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(1) the prover choose® < M,, generates a sampte— SampleDom(1"), and
commitsy = hy(m,r) = Eval(a, mr), (2) the verifier sends a random challenge
c « My, (3) the prover computes < TrapCol(a,t,m,r,c) and sends it, and (4)
the verifier checks thate R, andy = hy(c, 2).

Applying this conversion to outTHash, we obtain a passively-secure ID
scheme based on the average-case hardness @f,Sf6r g = O(n) (thus, the
worst-case hardngss of SI¥fR:s)). The protocol is quite ficient since the com-
munication cost i©O(n).

139






11

Signature

Organization: This chapter includes the signature schemes based on lattice
problems. We give the definitions of signaturelSection 11.1 [Section 11.P
summarizes the general conversions from several primitives to secure signature
schemes. liBSection IT.Bwe review the Gentry—Peikert—Vaikuntanathan signa-
ture schemelSection 11 Wives a description of the ideal-lattice version of it by
Stehk et al..[Section 11.Eeviews the ideal-lattice-based one-time signature by
Lyubashevsky and Miccianci§&ection 11.Geviews the obtained signatures from
Lyubashevsky’s ID scheme. [Bection 11.]J/gives a brief review of a signature
scheme proposed by Peikert very recently.

11.1 Definitions

11.1.1 Model of Signature Schemes

A signature scheme is a quadruplet of algorithmSIG
(Setup, KeyGen, Sign, Ver).

Setup(1"): A setup algorithm, given the security paramet&r dutputs public
parameterparam

KeyGen(paran): A key-generation algorithm, givgmaram outputs a pair of a
verification key and a signing keyK sK).

Sign(param sk msQ: A signing algorithm, giverparam sk and a message
msg outputs a signature.

Ver(param vk, msgo): A verification algorithm, giverparam vk, msg ando,
returns O (reject) or 1 (accept).
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Correctness: We require a correctness condition that for amgyg it holds that
Ver(param vk, msg o) = 1 with overwhelming probability for correctly generated
param (vk, sK), ando. Formally, we require that for anysg

param« Setup(1");

(vk, sK) « KeyGen(param);
o « Sign(param sk msg);
dec« Ver(param vk, msgo);

Pridec=1: = 1 - negl(n).

11.1.2 Security Notions

The required security is basically that any polynomial-time adversary cannot output
a valid signature even if it can choose a message adversely. The notion is called
asexistential unforgeabilityThere are several attacks and we describe the formal
definitions as follows:

One-time security means any polynomial-time adversary cannot output a valid
signature even if it is provided a signature of any message, which can be chosen
adversary, made by a valid signer. Consider the experi tlgf‘;(n) between
the challenge€ and the adversarf.

Experiment Expg$Te(n):

Setup Phase:The challengeC takes a security parametet. 1The chal-
lenger runs the algorithrBetup, and obtains parametepsaram Next,
it obtains ¢k, sk < KeyGen(paran). C gives I', param andvk to the
adversary.

Learning Phase: The adversary queries to the oraSien at most once.

e The oracle SN receives a messagmsg It returns o«
Sign(param sk msg to the adversary.

Challenge Phase:The adversaryA outputs a messagasg and a forged
signaturec™. If msg # msgandVer(param vk msg,o*) = 1, thenC
outputs 1. Otherwise, it outputs 0.

Definition 11.1.1(One-time security) Let SIG be a signature schemé{ an ad-
versary, anth a security parameter. We define the advantagd ab

Advgtl'(‘;g,f(n) = Pr[Exp‘S’tlgTﬂa(n) = 1] )

We say thatSIG is one-time secure ifAdvgtl‘g”;f(-) is negligible for every
polynomial-time adversar.

Furthermore, we say th&IG is strongly one-time secure Kdv%ﬁ‘é%’(-) is
negligible for every polynomial-time adversam, where we replace the check
msg # msgwith (msd, o*) # (msg o) in the challenge phase of the experiment.

Existential unforgeability under weak chosen message attacks means any
polynomial-time adversary cannot output a valid signature of an unsigned mes-
sage even if it is given signatures of chosen message before it is given the verifying
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key. Consider the experimempgﬁ‘é"";fma(n) between the challenge&r and the
adversaryA.

- f- .
Experiment Expgc " (n):

Initiating Phase: The challenge€ takes a security parametet. IC gives
A the security parametef 1C receivesifnsg, . . ., msg) from A.

Setup Phase:The challenger runs the algorith®etup, and obtains param-
etersparam Next, it obtainsyk, sk < KeyGen(param).

Learning Phase: The challenger makes signaturgdor the messagesg
usingsk Then, it feedvkandoy, ..., o to the adversary.

Challenge Phase:The adversaryA outputs a messagasg and a forged
signatures™. If msg # msg for anyi andVer(param vk msg,o*) = 1,
thenC outputs 1. Otherwise, it outputs 0.

Definition 11.1.2 (EUF-wCMA security) Let SIG be a signature schemg{ an
adversary, and a security parameter. We define the advantagd ab

AdvEEwemn) = Pr[ExpZtemdn) = 1] .

We say thaBIG is existentially unforgeable under weak chosen message attacks if

Advgﬁ’é"";fma(-) is negligible for every polynomial-time adversafy

Existential unforgeability under chosen message attacks (EUF-CMA) means
any polynomial-time adversary cannot output a valid signature even if it is provided
a signature of any message, which can be chosen adversary, made by a valid signer.
In strong EUF-CMA (sEUF-CMA), the adversary wins if the output message is
already signed (we need the output signature is not equal to the signature output by
the legitimate signer).

Consider the experimerﬁxpgfgf;{m
versaryA, where goak {euf, seuf.

&n) between the challenger and the ad-

Experiment Expgf’g";(ma(n):

Setup Phase:The challenge takes a security parametet. 1The chal-
lenger runs the algorithrBetup, and obtains parametepsram Next,
it obtains {k sk < KeyGen(param). C gives 1, param andvk to the
adversary.

Learning Phase: The adversary queries to the oraten.

e The oracleSign receives a messagesg in thei-th query. It returns
o < Sign(param sk msg) to the adversary.

Challenge Phase:The adversaryA outputs a messagesdg and a forged
signatureo™.

¢ If goal = euf then, the challenger checks timasg # msg for any
i andVer(param vk, msd,o*) = 1, thenC outputs 1. Otherwise, it
outputs 0.
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e If goal = seuf then, the challenger checks thais(,o*) #
(msg, o) for anyi andVer(param vk, msg, o*) = 1, thenC outputs
1. Otherwise, it outputs O.

Definition 11.1.3(EUF-CMA and seUF-CMA security)Let SIG be a signature
schemeA an adversary, anda security parameter. We define the advantagé of
as

Advg‘l’g!;ma(n) = Pr[Expgfgf;:{ma(n) = 1].

We say thatSIG is existential unforgeable under chosen message attacks if
Advgfgfﬂ’)"a(-) is negligible for every polynomial-time adversary.
We say thasIG is strongly existential unforgeable under chosen message at-

tacks ifAdvg‘fg‘:ﬂ‘fm?-) is negligible for every polynomial-time adversafy

11.2 General Conversions to Secure Signature Schemes

We have found a lack of textbooks or notes containing the general conversion tech-
nigues to obtain secure signature schemes. We here give a survey of them. We
hope that the textbook on this issue to appear.

11.2.1 From One-Way Function Family to Strong One-Time Signha-
ture Schemes

It is well-known that one-way functions yield one-time signature schemes and the
obtained signature scheme is employed anywhere of cryptography. The first one is
due to LamportlLam79 and we introduce only it in this section.

Suppose thadDWF = (OWF.Setup, OWF.Eval) is a one-way function family.
OWF.Setup(1") outputs an inder € K, that defines a functiof, : Dpa — Rna.
For x € Dpa, OWF.Eval(a, X) outputsfa(X).

Scheme 11.2.{Lamport-OTS). The message space of the signatur®,ig}".

Setup(1"): Given the security parametef,linvokea « OWF.Setup(1") and
outputsparam= a.

KeyGen(a): Given the index, it first choose B random elementsi(b) «— Dna
fori € [n] andb € {0, 1}. It next computeyi(b) — fa(xi(b)). The signing key is
sk=X = {xi(b)}i,b. The verification key izsk =Y = {yi(b)}i,b.

Sign(a, X, msg: The message is ambit string. Letmsg denote the-th bit
of msg Then, the algorithm reveald™? asc. Formally, it outputssr =
{Xi(msg) Yiern]-

Ver(a,Y,msgo): Parseo = {cilien- It checks thalyi(msg) = fa(oi) ando €
Dna. It accepts if all the checks are passed and rejects otherwise.

Theorem 11.2.2.The schemkeamport-OTS is one-time secure ®WF is one-way.

144



11.2. GENERAL CONVERSIONS TO SECURE SIGNATURE SCHEMES

For the proof, see, e.gBDS0§ Section 7.2].

Direct use of one-way function can achieve only one-time security rather than
strong one-time security. It is known that a target collision-resistant hash family
(as known as a universal one-way hash fafligiffices to construct strongly one-
time secure signature schem@br89]. Rompel showed that a one-way function
family is sufice to construct a target collision-resistant hash fari®lgrho() (see
the concrete proof Katz and Ko&KO05]). In addition, if we replace the internal
function ofLamport-OTS with a collision-resistant hash function, the similar proof
shows the security of the obtained scheme. See the next section.

From Collision-Resistant Hash Family to Strong One-Time Signature
Schemes

Replacing the one-way function family with the collision-resistant hash family, we
can prove strong one-time security of the schémmaport-OTS.

Suppose thaHash = (Hash.Setup, Hash.Eval) is a collision-resistant hash
family with domainD,, and rangeR,. Hash.Setup(1") outputs an indexa € K,
that defines a functioh, : D, — R,. Forx € Dy, Hash.Eval(a, x) outputsh,(x).

Scheme 11.2.8Lamport-OTS’). The message space of the signatur®,4}".

Setup(1"): Given the security parametef,linvokea <« OWF.Setup(1") and
outputsparam= a.

KeyGen(a): Given the index, it first choose & random elements™” « Dy,

fori € [n] andb € {0, 1}. It next computefyi(b) — fa(xi(b)). The signing key is

sk= X = {x}; ,. The verification key isk =Y = {y®};J.

Sign(a, X, msQ: The message is ambit string. Letmsg denote tha-th bit

of msg Then, the algorithm reveabémsg) aso. Formally, it outputss =
(msg)

{x
Ver(a,Y,msgo): Parseo = {cilien. It checks thatyi(msg) = fa(oi) ando €
Dna. It accepts if all the checks are passed and rejects otherwise.

Theorem 11.2.4.Suppose thaDy| / |R| = 2¢(°9" The schemeamport-OTS’
is strongly one-time securehfash is collision resistant.

Yieqn] -

Proof. Suppose that there exists an adversdrihat wins the strong one-time se-
curity game. We construct an adversgryhat outputs a collision.

At the first, 8 is given an indexa < Hash.Setup(1"). Then, it makes the
signing keyX = {xi(b)} and the verification key = {yi(b)} fori e [n] andb € {0, 1},
wherey® « ha(x™). 8 feedsaandY to A. If A queries a messagesgto be

1 Consider the following game; (1) the adversafyfirst outputmsge Dy, (2) the challenge€
generates «— K, and feeds itA, (3) A outputsmsd € D,, (4) C outputs 1 ifmsg# msd and
ha(msg = hy(msd) and O otherwise. The adversary wingifoutputs 1. We say{ = {H,}, (or
correspondindHash) is target collision resistance if no polynomial-time adversary wins the game
with non-negligible probability.
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signed, thers8 signs it by using the signing ke and returno- = {0} = {(X™?)

to A. At the end,A outputs (nsg, o).

We should consider two cases, (hyg = msgando™* # o, and (2)msg #
msg We show$ can output a collision with high probability in each case#if
wins the game.

(1) msg = msgando* # o: There must be an indéxsuch thatr? # o = x™9.
If Ver(a, Y, msd, o) = 1, ha(o) = ha(ci). Then,B can output a collisiond;', o)
for ha.

(2) msg # msg There is an indeksuch thamsg # msg. Notice thatA have not

seenxi(msg). Hence, with high probabilityr* # xX™% becauses choosesg.(msg)

+
uniformly at random fronD,, and|Dy| / |R,| = 20997 Therefore B can output a

collision (o, xi(msq)) for ha. m|

We note that we can changdtash with a collision-resistant preimage sam-
pleable function®SF. The proof is essentially same.

11.2.2 From One-time Signature Scheme

Merkle’s tree can be used to construct of EUF-CMA secure signature from one-
time signature. Intuitively, the verification key of the scheme authenticates the
verification keys of one-time signature. For theoretical and implementation tech-
niques, see the survey by Buchmann, Dahmen, and SZzB@IS0§.

11.2.3 From One-Way Trapdoor Permutations

We say the schem&DOWF is a one-way trapdoor permutation scheme if each
function f5 is a permutation (that is, the functidg is one-to-one and the domain
Dna and the rang&, 5 are the same set) and writeliDOWP.

The security of the full-domain hash (FDH) paradigm (or well-known heuris-
tic) is proved by Bellare and RogawaBR9J with introducing the random oracle
paradigm (see als@BR9€¢ and Coron [Cor0(]). The probabilistic full-domain
hash (PFDH) paradigm is a variant of FDH, which employs “salts”, and proposed
by Coron [Cor02 Appendix A].

Scheme 11.2.3TDOWP-FDH). Let TDOWP = (TrapGen, Eval, Inv) be a one-
way trapdoor permutation scheme with domain and rdbgg = R,a. The hash
functionH : {0, 1} — Ry is modeled as the random oracle. The signature scheme
TDOWP-FDH is defined as follows:

Setup(1"): The setup algorithm outpufsaram = 1". We omit the public pa-
rameter from the arguments of the algorithms for ease of notation.

KeyGen(1"): The key-generation algorithm invok&@®OWP.TrapGen(1") and
obtains &, 1). It outputs ¢k = a, sk=t).

Sig(t,msQ: The signing algorithm, givemsg first obtainsy = H(msQ € Rya.
Then, it invokesx <~ TDOWP.Inv(t,y) and outputx € D .
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Ver(a, msgo = x): The verification algorithm first computes= H(msg. If
y = TDOWP.Eval(a, X) it outputs 1, otherwise outputs O.

Scheme 11.2.TDOWP-PFDH). Let TDOWP = (TrapGen, Eval, Inv) be a one-
way trapdoor permutation scheme with domain and rdbgg = Rya. The hash
functionH : {0, 1} —» Ryais modeled as the random oracle. The signature scheme
TDOWP-PFDH is defined as follows:

Setup(1"): The setup algorithm outpufgaram = 1". We omit the public pa-
rameter from the arguments of the algorithms for ease of notation.

KeyGen(1"): The key-generation algorithm invok&@®OWP.TrapGen(1") and
obtains &, t). It outputs Yk = a, sk=t).

Sig(t,msQ: The signing algorithm, givemsg first generates « {0, 1}" and
obtainsy = H(msgo r) € Rya. Then, it invokesTDOWP.Inv(t,y) and obtains
X € Dp. The signature isr(X).

Ver(a, msgo = (r, X)): The verification algorithm first computgs= H(msgpr).
If y = TDOWP.Eval(a, x) it outputs 1, otherwise outputs 0.

Theorem 11.2.7.Both TDOWP-FDH and TDOWP-PFDH are EUF-CMA secure
in the random oracle model fDOWP is one-way.

Roughly speaking, the adversary againBOWP programsy as H(msg) for
somemsg, which is queried to the random oracle. In order to obtain tighter security
reductions, several researchers proposed the simulation and programming methods
of the random oracle. The simplest one is the simulator chaasg®] and setting
y asH(msg), whereQ is the number of the queries to the random oré&tley the
adversary. Using this method, we can upper bound

: 1
Advedma L an) < g/ dvroowe(n) + negl(n).

whereAdvrpowe(n) is the upper bound of the advantades/ 7], (1) for any
polynomial-time adversaryd against one-way property aiDOWP. See, e.g.,
Coron [Cor0( to reduce the factor /QQ. We note that Coron’s method can be

applied to homomorphic functions.

11.2.4 From Collision-Resistant Preimage Sampleable Functions

Gentry et al. [(GPV0{ observed that we can repla€VTDP with a collision-
resistant preimage sampleable function far®8F. Furthermore, it yields tighter
security than that foOWTDP-FDH andOWTDP-PFDH. The schemeBSF-FDH
andPSF-PFDH are defined as follows:

Scheme 11.2.8PSF-FDH). LetPSF = (TrapGen, Eval, SampleDom, SamplePre)

be a preimage sampleable function scheme with dorBgimand rangeR,. The
hash functionH : {0,1}* — R, is modeled as the random oracle. The scheme
PSF-FDH is defined as follows:
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Setup(1"): The setup algorithm outpufgaram = 1". We omit the public pa-
rameter for ease of notation.

KeyGen(1"): The key-generation algorithm invokesF.TrapGen(1") and ob-
tains @, t). It outputs vk = a,sk=1).

Sig(sk=t,msgQ: The signing algorithm, givemsg first checks its local storage.
If (msgomsg is in local storage, the outputmsg Else, it computey «
H(msQ € R,, invokesPSF.SamplePre(t, y) and obtaingrmsg= X € Dp.

Ver(vk = a, msgo = X): The verification algorithm first computgs= H(msg.

If y = PSF.Eval(a, X) it outputs 1, otherwise outputs O.

Scheme 11.2.9 (PSF-PFDH). Let PSF =
(TrapGen, Eval, SampleDom, SamplePre) be a preimage sampleable func-
tion scheme with domaib, and rangeR,. The hash functiom : {0, 1}* — Ry is
modeled as the random oracle. The sch&8E-PFDH is defined as follows:

Setup(1"): The setup algorithm outpufgaram = 1". We omit the public pa-
rameter for ease of notation.

KeyGen(1"): The key-generation algorithm invok@SF.TrapGen(1") and ob-
tains @, t). It outputs vk = a,sk=1).

Sig(sk=t,msQ: The signing algorithm, givemsg first generates « {0, 1}"
and obtaingy = H(msgo r) € R,. Then, it invokePSF.SamplePre(t,y) and
obtainsx € Dy. The signature isr(X).

Ver(vk = a,msgo = (r, X)): The verification algorithm first computeg =
H(msge r). If y = PSF.Eval(a, X) it outputs 1, otherwise outputs O.

Since the underlying functions are collision resistant, the security reduction is
tighter than that in the FDH signature based on one-way trapdoor functions. We
note that this idea is used independently by Berns@erQ§ to given the tighter
security reduction for the Rabin—Williams signature scheme, which is based on the
4-to-1 one-way function.

Theorem 11.2.10(Propositions 6.1 and 6.2GPV0{). Let PSF be a collision-
resistant preimage sampleable functions with doniajrand rangeR,. Then both
PSF-FDH andPSF-PFDH are sEUF-CMA secure in the random oracle model.

11.2.5 From Ildentification Schemes: The Fiat—Shamir Conversion

Let us recall canonical identification schemes. The scheme has a fprower
(P1,P2) and a verifietv = (V1,V2). The interaction between them is a triplet
of a commitmenty from P, a challengec from V;, and a response from P».
Roughly speaking, if we replaaeby V; with ¢ = H(msgy), there is no interac-
tion. The signer computgs« P4, ¢ « H(msgy), andz « P, and setsy(, c, 2) as
a signature. Then, verifier can verify it by invoking.

Originally, Fiat and Shamir introduced the conversion as a heuristic. Its se-
curity is proved in Pointcheval and Steflf§96¢ and Okamoto and Oht&094.
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Finally, Abdalla, An, Bellare, and Namprempre minimized the assumption on the
underlying ID scheme, which must be passively secure and has large challenge
space.

Recall that a canonical identification[8ection 6.2.2We describe the slightly
modified version of the Fiat—Shamir conversionAABNO08].

Scheme 11.2.11(The Fiat—-Shamir conversion with a slight modifica-
tion [AABNOS]). Let ID = (ID.Setup, ID.KeyGen, ID.P = (ID.P,ID.P),ID.V =
(ID.V41,ID.V>7)) be a canonical ID scheme with challenge sp&esuch that
ICnl = 2¢009M et H : {0,1)* — C, be the random oracle. Lei(n) be
some non-negative integer function. The converted signature scBame-
(Setup, KeyGen, Sign, Ver) is defined as follows:

Setup(1"): Given the security parameter, it obtajpsram < 1D.Setup(1") and
outputsparant = param

KeyGen(paranf): Given the public parametguaram it obtains pk sk «
ID.KeyGen(1") and outputs\K, sK) = (pk, (pk, sK).

Sign(param, sk = (pk sk, msQ: Given parani, pk, sk and a messagmsg
it generate a signature as follows: First, it obtainan{st) <«
ID.P1(param pk, sk). Next, it chooses « {0,1}*™ and computesh «
H(r o cmto msg. Finally, it obtainsrsp < ID.Py(ch,stz). It outputs
o = (r,cmt rsp).

Ver’(param, vk = pk, msgo = (r,cmt rsp)): Givenparani, vk, msg ando, it
makes a decision as follows: It computEs « H(r o cmto msg, obtains
dec« ID.Vy(pk, cmt ch, rsp), and outputslec

If s(n) = 0 for anyn, this is the original Fiat—Shamir conversion. To make the
result general, Abdalla et al. introduceth) as the parameter.

To describe the security, we require the non-triviality of an ID scheme. That s,
commitments generated By has stiiciently large min-entropg(n) = w(logn).

Theorem 11.2.12(JAABNO8]). Suppose thalD is a passively-secure canonical
identification scheme witlC,| = 2¢(°9" and (n) + B(n) = w(log(n)). Then, the
obtained signature schensdg’ is EUF-CMA secure in the random oracle model.

Corollary 11.2.13(JAABNOS8])). Suppose thdD is a passively-secure, hon-trivial,
canonical identification scheme wi,| = 2¢(°9" Suppose thag(n) = 0 for any
n. Then, the obtained signature scheBig’ is EUF-CMA secure in the random
oracle model.

The Fiat—Shamir Conversion with Aborts

In the above conversiotD has perfect completeness, that is, the decision of the
legitimate verifier interacting the legitimate prover is 1 with probability 1. Inter-
estingly, LyubashevskyLyu09] observed that the ID schemes are not needed to
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be perfectly correct in the Fiat-Shamir conversion. The signer repeat the above
procedure until it succeeds.

One-Time Signature Schemes from Identification Schemes: The Fiat—Shamir
Conversion without the Random Oracle

In [BS04, Bellare and Shoup proved that, if we want to constara-timesigna-

turéz, a collision-resistant hash family can be used instead of the random oracle in
the Fiat—Shamir conversion. However, the underlying identification must be con-
currently secure rather than passively secure as in the Fiat—Shamir conversion. In
addition, the underlying identification must have a special soundness.

Intuitively, the public and secret key of the identification scheme corresponds
to the master verification and signing key, respectively. The commitment generated
by the prover and its randomness are the session verification key and the session
signing key. For each session key, only a message can be signed. If only one
session is allowed, the scheme is a one-time signature scheme.

Scheme 11.2.14The Fiat—Shamir conversion without the random oreBi8Qq).
LetID = (ID.Setup, ID.KeyGen, ID.P = (ID.P1, ID.P5), ID.V = (ID.V4, ID.V>)) be a
canonical ID scheme with challenge sp&gesuch thafCp| = 2¢(°9" | etHash =
(Hash.Setup, Hash.Eval) be a hash scheme. Lefn) be some non-negative integer
function. The converted signature scheBig = (Setup, KeyGen, Sign, Ver) is
defined as follows:

Setup(1"): Given the security parameter, it obtajpsram « 1D.Setup(1") and
k « Hash.Setup(1"), and outputparant = (param k).

KeyGen(paranm = (paramKk)): Given the public parametqrarand, it obtains
(pk, sK) < ID.KeyGen(1"). Next, it obtains¢mt stp) « ID.P1(param pk, sK.
It outputs (K, sK) = ((pk cm9), (pk, sk stp)).

Sign(paran, sk = (pk, sk stp), msg: Givenparani, pk, sk and a messagasg
it generate a signature as follows: It computes— Hash.Eval(k, cmtemsg =
hg(cmto msg. Finally, it obtaingsp « ID.Py(ch, stp). It outputso = rsp.

Ver(param, vk = (pk,cmi), msgo = rsp): Given param, vk, msg ando, it
makes a decision as follows: It computels « Hash.Eval(k,cmto msg,
obtainsdec« ID.V(pk cmt ch, rsp), and outputslec

Theorem 11.2.15][BS0§). Suppose thaD is a concurrently-secure, canonical,
and special-sound identification scheme w@h| = 2¢(°9"  Also, suppose that
Hash is collision-resistant. Then, the obtained signature sch8igéis strongly
one-time secure.

2 Precisely, they definevo-tier signature and showed it includes one-time signature as a special
version.
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11.2.6 From Trapdoor Hash Schemes and Weakly Secure Signature
Schemes

Shamir and Tauman showed that the hash-sign-switch paradigm bares secure sig-
nature scheme.

Scheme 11.2.16(The Hash-Sign-Switch Paradign§T0]]). Let THash =
(TrapGen, Eval, SampleDom, TrapCol) be a trapdoor hash scheme andSet =
(Setup, KeyGen, Sign, Ver) be a weakly-secure signature scheme. A new signature
schemesig’ = (Setup’, KeyGen’, Sign’, Ver’) is obtained as follows:

Setup’(1"): Given the security parametef,linvoke param « Setup(1") and
outputparam
KeyGen’(param): Generate key pairs/k, skl «— KeyGen(param and @,t) «

TrapGen(1"). The new key pair igsk' = (vk a) andsk = (sk a, t).

Sign” = (SignOff, SignOn): The signing algorithm has two stagesff-line
phase and one-line phase.

SignOff’(sK): Choose a random messagsed «— M, and a random string
r' « SampleDom(1"). Then, compute a digest = hy(msd,r’) by
Eval(a,msd,r’). Next, obtainocos « Sign(sk d). It outputsoog and
Stor = (d, msd, r’).

SignOn’(sK, oof, Stor, MsQ: Obtain r  «  TrapCol(a, t, msd, r’, msgq).
Outputo = (oo, r) as the signature.

Ver'(vK = (vk,a),msgo = (oo, r)): Computed <« hy(msgr) and output
dec« Ver(vk, d, oof) as the decision.

Theorem 11.2.17.Let THash be a trapdoor hash scheme and 8¢ be an EUF-
wWCMA secure signature scheme. Thé&ig’ is an EUF-CMA secure signature
scheme.

Although we have changed the definition of trapdoor hash families, we can give
the security proof by the essentially similar way to the one of Shamir and Tauman.
Hence, we omit the details.

11.2.7 From Identity-based Encryption

As noted in the paper by Boneh and FrankBBEDJ, Naor pointed out identity-
based encryption induces the signature scheme. For notation and notions on

identity-based encryption, sghapter Tj
Given an IBE schemiBE = (Setup, Ext, Enc, Dec), a sighature schen®G =
(KeyGen, Sign, Ver) is defined as follows;

KeyGen(1"): (vk sk = (param msk « Setup(1").
Sig(msgsk: o = usknsg « Ext(msg msk.
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Ver(msg o, vk): To verify the signature- onmsgunder the verification keyk, it
randomly generates a ciphertekk— Enc(m, msg pK) with a random plaintext
m, and checks than = Dec(ct, o, pK). If the check is passed, it accepts the
signature. Otherwise, reject.

It is easy to show that this construction yields secure signature scheme if the
underlying identity-based encryption scheme is fully-ID secure. Roughly speak-
ing, if there is a forger for the signature scheme, one can extract the identity and its
decryption key. Hence, this violates the security of the underlying identity-based
encryption scheme.

11.3 The Gentry—Peikert—Vaikuntanathan Signature

We now turn back to lattice-based signature schemes. The first appearing ones are
proposed by Gentry et alGIPV0E. The schemes are obtained by applying FDH
and PFDH paradigms cPSF.

11.3.1 Description

Applying PSF-FDH andPSF-PFDH to the lattice-based CR-PSF$Section 10.5
we obtained a SEUF-CMA secure signature scheme based on the SIS assumption.

Scheme 11.3.1GPV-FDH). We model the hash functiad : {0, 1}* — Zg as the
random oracle.

Setup(1"): The setup algorithm outpuigaram = 1". We omit the public pa-
rameter for ease of notation.

KeyGen(1"): The key-generation algorithm invokeBSF.TrapGen(1") in[Sec}t
fion 10.5and obtains &, T) € Zg*™ x Z™M. It outputs ¢k = A, sk=T).

Sign(sk= T, msQ: The signing algorithm, givemsg first obtainsu = H(msg.
Then, it invoked PSF.SamplePre(A, T, s, u) in[Section T0.Fand obtains.
(Here, e is a sample from the distributio® which is statistically close to
DA&(A),s,t wheret is any solution ofAt = u modq.)

Ver(vk= A,msgo = €): The verification algorithm first computes= H(msg.
Then, it verifiesAe = u modq. Output 1 if the check is passed, otherwise, 0.

Scheme 11.3.ZGPV-PFDH). We model the hash functiod : {0,1}" — Zg as
the random oracle.

Setup(1"): The setup algorithm outpufgaram = 1". We omit the public pa-
rameter for ease of notation.

KeyGen(1"): The key-generation algorithm invokeBSF.TrapGen(1") in[Sect
fion 10.5and obtains &, T) € Zg*™ x Z™M. It outputs ¢k = A, sk=T).

Sig(sk= T, msQ: The signing algorithm, givermsg first generates a ran-
dom stringr « {0,1}" and obtainsu = H(msgo r). Then, it invokes
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LPSF.SamplePre(A, T, s,u) in [Section 10.Fand obtainse. It outputs (, €)
as the signature.

Ver(vk= A,msgo = (r,€)): The verification algorithm first computes =
H(msgo r). Then, it verifiesAe = u modg. Output 1 if the check is passed,
otherwise, 0.

Theorem 11.3.3(Security, [GPV0q). Letm > (5 + 36)nlogq for some constant
6 > 0. Lets > L - w(4/logm), whereL = O(4/nlogq). The above schemes are
SEUF-CMA secure i8IS, sy is hard.

The security proofs of two schemes is obtained by combining the arguments
in[Section 10.mndSection 11.2 4

11.4 The Stehé—Steinfeld—Tanaka—Xagawa Signature

As an analogue of the GPV signatures, we introduce the SSTX signatures based on
the ideal-lattice-based PSFs. These schemes are obtained by replacing the under-
lying PSFSLPSF with ILPSF.

11.4.1 Description

Scheme 11.4.1SSTX-PFDH). We model the hash functiad : {0,1}* — R4 as
the random oracle.

Setup(1"): The setup algorithm outpufsaram = 1". We omit the public pa-
rameter for ease of notation.

KeyGen(1"): The key-generation algorithm invokd&PSF.TrapGen(1") in
[Section 10.Khence ExtldLattice in [Section 10.Band obtains & T). It out-
puts Yk = & sk=T).

Sig(sk= T, msQ: The signing algorithm, givenmsg first generates a ran-
dom stringr « {0,1}" and obtainsu = H(msgo r). Then, it invokes
ILPSF.SamplePre(a, T, s,u) in [Section 10.kand obtaing. It outputs ¢, &)
as the signature.

Ver(vk = 4 msgo = (r,€)): The verification algorithm first computes =
H(msgo r). Then, it verifies . Ifa& = u modq it outputs 1, otherwise outputs
0.

11.4.2 Security Proofs

The security proofs of two schemes is obtained by combining the argumé&sgslin
ftion 10.%andSection 11.2}4
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11.5 The Lyubashevsky—Micciancio One-Time Signature

This scheme has a flavor of the Bellare—Shoup transformation with the Lyuba-
shevsky identification scheméey08-ID¢,,, but there are two main fierences.

The first ditference is the change of key spaces and the method of key genera-
tion to obtain perfect correctness. The seconedénce is no use of collision
resistant hash functions. We note that this is a reverse-chronicle order. Lyuba-
shevsky and MiccianciddMO8] proposed the scheme in March 2008 and Lyuba-
shevsky [Lyu08h [Lyu09] proposed his identification scheme in September 2008
and December 2009.

11.5.1 Description

For simplicity, we fixf = x"+1 andl = [log?n|. Let us fixq = n® andm « [logn.
Define for anyi € N,

Dei = {y € R | IVl < 5ig™™ andDy; = {¥ € R, | Yl < 5inpg"/™}.

We also define
G = (y € Ry | I¥lco < 109" ™nlog? n}.

Scheme 11.5.1LM-OTS [LMQS]).

Setup(1"): It chooses a random row vectar— R;“q uniformly and outputs it.

KeyGen(&): It first chooser € {0,1)). If r = 0' setj = |. Else, setj as the
position of the left-most standing bit of Pick & < Dej andi « Dy .
Computeu < hx(&) andy « hx(F). The signing key isy,y, & ) and the
verification key is Q, ).

Sign(a, sk= (u,y, & ), msg= c): The message is in {-1,0,+1}". It outputs
OC=72«—CRe+T.

Ver(a, vk = (u,y),msg=c,o = 2): If ze Gandhy(2) = ceu +y then output 1
(accept) and output O otherwise.

Theorem 11.5.2([LM08, Theorem 8]) The above scheme is strongly one-time
secure if thé-SISy, , is hard on average, whefe= 20q"/™n log? n. In particular,

for appropriately settings on the parameters, the scheme is sedu®8/P;’is hard

in the worst case, where= O(n?).

For the proof, see the original pap&MO08].

11.6 The Lyubashevsky Signature

We also obtain an EUF-CMA secure signature by applying the Fiat-Shamir trans-
formation with aborts to the basic protocollgfo9-1D [Section 6.B
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11.6.1 Descriptions

Scheme 11.6.1Ly-SIG, [Lyu09]). All the participant agree with the parameters
0, De, Dy, D¢, andG as inSecfion 6.B We model the hash functidd : {0, 1}* —
D. as the random oracle. LeEdenotex" + 1.

Setup(1"): It outputsa « R}"q uniformly at random.

KeyGen(Q): It choose « D¢ and computes = hy(€). It outputssk = (u, €
andvk = u.

Sig(4, (u, €),msQ: Chooself « D; and computey < hy(f). Computec «
H(msgo y). Then comput& « c® €+ . If Ze G then it outputsr = (y, 2).
Otherwise repeat the above procedures.

Ver(a, u,msgo = (y, 2)): First, computee «— H(msgo y). If Zze G andhy(2) =
C® U+ Yy outputs 1, otherwise outputs O.

Theorem 11.6.2JLyu09, Theorem 3]) The above scheme is EUF-CMA secure if
f-SIS;fmﬁ is hard on average, whem@ = 2(mn- 1)ok. In particular, leto be a

constant and(n) = @(log? n). Then for appropriately settings on~the parameters,
the scheme is securefiSVP}is hard in the worst case, whefe= o(r).

11.7 The Signature from “Bonsai”

Very recently, Peikert proposed a signature scheme made by “Bonsai.” This signa-
ture scheme has the flavors of the Hohenberger—Waters signature scheme based on
the RSA assumption and as the IBE-to-Sig conversion.

11.7.1 Description

Scheme 11.7.1(Bonsai-wSIG). We model the hash function. The parame-
ters are defined as follows: Two integerg,m, = O(nlogq), and a bound
L = O(+/nlogqg). Let a hashed message lengthlkband total dimensiomm =

my + (k+ 1)mp, and a Gaussian parametet L - w(+/logn).

KeyGen(1"): GenerateAg € Z§™*™) with a basisT of Ag(Ao) such that
IT|l < L. For eachlf, j) € {0,1} x [K], generate uniform and independent
AP € Zg“™. Outputvk = (Ao, {A}) andsk = (S, vK).

Sig(sk= (T, VK, msg= p € {0,1}): Let A, = [AolA|...|A] € Z§™. Let
T, < ExtBasis(T, A,). Then, outputr = & « SampleD(T,, s, 0).

Ver(vk = (Ao, {Agb)}), msg=u,0 =€): Let A, asabove. I+ 0, [lg < s- Vm,
andA,e = 0modg, output 1 as accept; otherwise, output O as reject.

Theorem 11.7.2([Pei09). Letm=m + (k+ L)mp andm’ = my + (2k + 1)n.
The above scheme is EUF-WCMA securSI&;y s is hard on average, where

B =sym.
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For the proof, seeHei091).

Combining the above schenBonsai-wSIG and the trapdoor commitment
scheme, we obtain the schemBensai-SIG. If we setpk = a of the public key
of the trapdoor-commitment scheme as the public parameter, we then have the sig-
nature scheme. In addition, if the verification keyincludesa and the signing
key skincludes the corresponding trapddpthe scheme is now one-lifatt-line
signature.

Scheme 11.7.3 (Bonsai-SIG). Let THash =
(TrapGen, Eval, SampleDom, TrapCol) be a trapdoor hash scheme with range
{0, 1}K. The parameters are defined as follows: Two integarsn, = O(nlogq),
and a bound. = O(+/nlogq). A hashed message lendthand total dimension
m=m + (k+ 1)mp, and a Gaussian parameset L - w(+/logn).

KeyGen(1"): Invoke Bonsai-wSIG.KeyGen and obtainvk = (Ao, {Agb)}) and
sk = (T,vK). Invoke TrapGen(1") and obtainpk = a andsk = t. Output
vk = (Ao, {Agb)}, a) andsk = (T, t, vK).

Sign = (SignOff, SignOn):

SigOff(skor = (T, VK)): First generate random strimg— SampleDom(1")
and comput@ « Eval(0;r) € {0, 1}%. Then, letA, = [AglAL!|...IA] €
zg™ and let T, « ExtBasis(T,A,). Outputoor = e «
SampleD(T,, s,0) andstyg = (u, 1).

Sigon(skon = t, oo = €, Stor = (i, 1), msge {0,1}*): It computesr’ «
TrapCol(u, 0, r, msg. Then outputs the signatuse= (r’, €).

Ver(vk = (Ao, {Agb)}), msgo = (r,€)): First computeu < Eval(msgr). Let A,
as above. le # 0O, g < s- +/m, andA,e = 0 modq, output 1 as accept;
otherwise, output O as reject.

The signing algorithm can be split into two algorithn&gOff and SigOn,
whereSigOff does not involve the message.

Remark 11.7.4. Notice that the above scheme is EUF-CMA secure but not SEUF-
CMA secure; From a valid signature = (r,€) on msg a new signaturer =

(r, —€) on msgis obtained. To protect the scheme against the above atté&krR
fixed the verification; the public key contaims« Zg, the signer samples «
SampleD(T,, s, u), and the verifier checkd,e = u modg. For the details and the
proofs, see Bkert's paperiRiic1d.

Remark 11.7.5. Stehk et al. [ESTX09 already proposed ideal-lattice version of
“Bonsai” (sedSection IO/ Replacing the “Bonsai” technique with the miniature
“Bonsai,” we obtain ideal-lattice-based “Bonsai” sighature scheme.
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12

Encryption

Organization: [Section 12 lireviews the brief history of lattice-based encryp-
tions.[Secfion 12.Ireviews the definitions of public-key encryption, that is, model
and security notions. IBection 12 .igave the review of the Ajtai—-Dwork encryp-

tion scheme.[Section 12 hand[Section 12.Bare the reviews of the Goldreich—
Goldwasser—Halevi and NTRU encryption schemes. We review the Regev03 en-
cryption scheme iBection 12.I7 Regev's LWE-based encryption scheme, which
plays important roles in lattice-based cryptography, is reviewégeiction 12.f
[Section 12.&eviews the “dual” of Regev’s LWE-based encryption schei@ect
ffion 1Z.I0contains lossy trapdoor functions and its children by Peikert and Wa-
ters. By using them, we describe the Peikert—Waters encryption schdéfezlin
fion 12.10.2

12.1 Introduction

After the seminal result of AjtaiAjt96], Ajtai and Dwork [AD97] gave the first
public-key encryption schen®D based on the worst-case hardness of lattice prob-
lems. However, their inéiciency in the real world opened the door of attacks.
Hence, éicient public-key encryption schemes with harder security reduction were
needed.

The partial answers appeared almost simultaneously; GGH and NTRU. Gold-
reich, Goldwasser, and HaleviGGH97l} proposed a lattice variant of the
McEliece encryption schem®IcE7§ (we describe them later). Histein, Pipher,
and Silverman also proposed a encryption scheme employing the quotient ring of
polynomials HPS98. These schemes are moifi@ent thanAD, but they lack the
security proof based on the worst-case hardness of lattice problems.
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12.1. INTRODUCTION

param | ek Enc C leK |lcti/Imsg
AD-GGH [IZ3 |- Aig.i1 | Ae+ 5a, modB P(B) | On%) | Ond)
AD* (123 - A Ae+4a, modB PB) | 6N | Ond)
RO3 (IZ3 N =287 | g ae+pu [ail/Z] modN 7N Ond) | 6(n?)
LWE-PKE @Z9 | (A) AP |(AePTe+ulq/2) zyx z§ | O(n?) | O(1)
Dual (IZ9 (A) AU | ATs+xp, UTs+x, +pla/2) | Z0x Z8 | O(n?) | O(1)

Table 12.1: Comparisons among IND-CPA secure encryption schemes. The factor
n denotes the security parameter. See corresponding sections for the details

The other answer is given in 2003, the Regev03 encryption schitegDfh.

He proposed a 1-dimensional versionAld and reduced it security from harder
lattice problem than that of Ajtai and Dwork. Howeveffigiency is not good
because the key has huge size. This obstructs us to take a larger security parameter.

These situations were overcome by Regev in 2(&g09 using quantum re-
ductions. He gave a simple public-key encryption scheme based on the variant of
Learning Parity Noise (LPN) problem, called Learning With Error (LWE) Problem,
and showed the quantum reduction from SJ\®the variant.

On the blowup factor, the ratio between the ciphertext and the plaintext, the
original Regev05 encryption scheme has a faG@rlog n).

Kawachi, Tanaka, and XagawldTX07] reduced the ciphertext blowup factor
to O(n). This is dramatically reduced (1) by an amortizing technique of Peikert,
Vaikuntanathan, and WateB8YWO0§.

Gentry, Peikert, and Vaikuntanath&&FPV0§ observed that the roles of a pub-
lic key and a ciphertext can be swapped. This scheme is called as the “Dual” en-
cryption scheme and opens the door to construct identity-based encryption scheme.
See[GPV0{ andChapter Tj

The above schemes are secure in the sense of indistinguishability under cho-
sen plaintext attacks (IND-CPA). Can we construct encryption schemes enjoying
the stronger security, indistinguishability under chosen ciphertext attacks (IND-
CCA2)?

Peikert and WaterdWO0§ answered this problem by introducing lossy trap-
door functions and giving the construction of them from LWE problem. Peik-
ert [Pei09¢ (and Goldwasser and Vaikuntanath&M08]) also gave the answer
which exploited the one-wayness of the LWE function, which appedghiap}
fier 13

The schemes which we will not mention: Key-leakage security and key-
dependent message security are featured recently.

Key-leakage security states the scheme is secure even if the part of the secret
key was leaked, which was considered as the theoretical model of side channel at-
tacks. Akavia, Goldwasser, and Vaikuntanath@@Y09] showed the key-leakage
security of the Regev05 encryption scheme. We note that in a weaker model of
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key-leakage security, the combination of an IND-CPA secure public-key encryp-
tion scheme and the extractor yields secure encryption schE®@9. Gold-
wasser, Kalai, Peikert, and Vaikuntanathan proved the robustness of the LWE based
secret-key encryption schem&HPV1(. Dodis, Goldwasser, Kalai, Peikert, and
VaikuntanathanGK™ 10] also showed the key-leakage security of the “Dual” en-
cryption scheme in several models. See their papers for the details. We note that the
proof techniques of them partially appearSection 15.4which are independent.

Key-dependent message security states the scheme is secure even if the cipher-
text contains the information of the secret key, for examplee(dk) should be
indistinguishable fronEncei(0'), where €k dk) «— KeyGen(1") andl = |dK. For-
mally, the adversary could choose a function from some ¢fass{f : K,'§ — M},
wherekK,, is a decryption-key space aM, = {0, 1} is a message space. The adver-
sary has an access to the oracle which ret&mesy (f(sk, . . ., ski)) or Encek (o))
on the query |, f).

The scheme which satisfies some functions was firstly proposed by Boneh,
Halevi, Hamburg, and OstrovskBHHOOQ§. In the spirit, their scheme has KDM-
security with respect to the class dfiae functions under the DDH assumption.
Applebaum, Cash, Peikert, and SahaCPS09. also proposed a KDM-secure
public-key encryption scheme with respect to the classtsfafunctions under the
LWE assumption. We mention the improvements by Brakerski, Goldwasser, and
Kalai [BGKO9] and Barak, Haitner, Hofheinz, and IshBHHIO9] which proposed
the schemes with respect to richer class of functions. For the details see the original
papers.

We also does not describe the variants of the Peikert encryption scheme by Katz
and VaikuntanathanKlV09], which yields secure password-based authenticated
key-exchange schemes.

Finally, we mention Gentry’s fully homomorphic encryption schei@en09
and its variantd$V09 vDGHVQ09]. Their encryption functions are ring homomor-
phic toF,, which solved the long-standing open problem. (We note that Aguilar
Melchor, Gaborit, and HerranAMGHOQ8] also gave additive homomorphic en-
cryption schemes which allovtsnultiplications.)

12.2 Definitions

12.2.1 Model of Public-Key Encryption Schemes
A PKE schemdPKE is a quadruplet of algorithm$étup, KeyGen, Enc, Dec).

Setup(1"): A setup algorithm, given the security paramet&r dutputs public
parameterparam

KeyGen(param): A key-generation algorithm, givgraram outputs a pair of an
encryption key and a decryption kesi( dk).

Enc(param ek msQ: An encryption algorithm, giveparam ek and a message
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msg outputs a ciphertexit.

Dec(dk, ct): An decryption algorithm, givedk andct, returnsmsg

Correctness: The correctness of a public-key encryption scheme is defined as
follows: With overwhelming probability the ciphertext of any messatggin the
message space under an encryptionddeghould be decrypted intosg where the
probability is taken by coins ddetup, KeyGen, andEnc. Formally, this require-
ment is denoted

param« Setup(1");

(ek dK) « KeyGen(param;
ct « Enc(param ek msg;
msg« Dec(dk, ct);

Pr{msg+ msg: < negl(n).

12.2.2 Security Notions

We adopt the standard security notions, indistinguishability of ciphertexts under
several attacks. Roughly speaking, any polynomial-time adversary cannot distin-
guish two ciphertexts of distinct messagasgand msg even if it chooses the
messages. In chosen plaintext attacks (cpa), the adversary could only encrypt its
chosen message and cannot use the decryption oracle. In chosen ciphertext attacks
(ccal), the adversary could query to the decryption oracle until the adversary com-
mits the target messages. In chosen ciphertext attacks (cca2), the adversary could
query to the decryption oracle after it receives the target ciphertext.

We describe the formal definition as follows: The following experiment is de-
fined in the “second and penalty” style (s&HKQ9] for the discussion on the
definition styles). Consider the experim&np192 (n) between the challenger

PKE,A
and the adversarsi, where atke {cpa ccal cca3.

: ind-atk (-
Experiment Expge 7 (N):

Setup Phase:The challenger takes the security parametend obtains
param« Setup(1") and gk dk) < KeyGen(param. It givesparamand
ekto the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle ifatk
{ccalcca3d. The oracleDec receives an inputt and returnansg «
Dec(dk, ct).

Challenge Phase:The adversaryA outputs two plaintextaisg andmsg.
The challenger flips a coib « {0, 1}, sets the target ciphertext to be
ct* «— Enc(ek msg), and sendst* to the adversary.

Learning Phase 2: The adversary can issue queries to the oracle if=atk
cca2. The oracl®xc receives inputt. If ct = ct*, the challenger outputs
0 and halts. Otherwise, the oracle retummsgy« Dec(dk, ct) to A.
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12.3. THE MCELIECE ENCRYPTION SCHEME

Guessing PhaseFinally, A outputs a guesk’ € {0,1}. If b’ = b, the
challenger outputs 1, otherwise 0.

Definition 12.2.1. Let PKE = (Setup, ReKeyGen, Enc, Dec) be a public-key en-
cryption scheme# an adversary, anda security parameter. We define the advan-
tage ofA as

AR

We say thatPKE is ind-atk secure ifAdvi22%(:) is negligible for every

polynomial-time adversaryl, where atke {cpa ccal cca3l.

. , 1
Adv 2% (n) = ‘Pr[Exp'F?gg‘;,(n) =1]-3

12.3 The McEliece Encryption Scheme

As the warm up, we start with a coding-theoretic encryption scheme, the McEliece
encryption scheméMcE7§ which has appeared in 1978 and is believed that it re-
mains secure against quantum computes. (See the si®@&8§[) The McEliece
encryption scheme is as follows (as opposite to ordinal notation, we transpose ma-
trices and rename the parameters):

Scheme 12.3.1the McEliece encryption schemigcEliece). All the participant
agree use of amj, m—n, 2t + 1] linear codeC, which is able to decode a received
word up tot errors.

Key Generation: Let G e F™™ be a generator matrix of the linear code. Then,
the public key isG’ = TIGS, whereS « GL,(F) andIl is a random permuta-
tion matrix over n|. the secret key i§, G, andII.

Encryption: To encrypt the messages FX, choose a error vector «— S(m,1)
and compute the ciphertept— G'Ts + x.

Decryption: To decrypt it, computel = II"p = GSs+ II"1x, decode it and
obtainGSs finally outputss.

We already se&(m, t) is an enumeration set. Hence, for any veaterS(m, t),
n(x) is also inS(m, t). Thus, the decoding procedure works well in decryption.

The security is guaranteed from the intuition that one could not find the struc-
ture G from G’ in polynomial time ofn. The one-wayness follows from the two
assumptions; the one is that that the learning with parity (LPN) problem is hard and
the other is the indistinguishability of the public key and the uniform &7&.

We will turn back to this encryption scheme, because this and some lattice-
based encryption schemes share some structures.

12.4 The Ajtai-Dwork Encryption Scheme

Ajtai and Dwork proposed three public-key encryption scheme based on lattice
problems. The third of them is well-known as the Ajtai—-Dwork encryption scheme.
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The first construction of lattice-based public-key encryption scheme is the Ajtai—
Dwork encryption schem@D97]. (The first and the second are preparations for
the third cryptosystem.) Later, Goldreich, Goldwasser, and H&BESH974 elim-
inated decryption errors in the public-key encryption scheme. The scheme enjoys
the average-caggorst-case security proof and is based on uSVP with an approx-
imation factorO(n!Y). The scheme is later improved by the originators, Ajtai and
Dwork.

We give a rough structure of the encryption scheme. The secret key is a unit
n-dimensional vectou € B,(1). Imagine the set of the hyperplands= {x € R" |
(X,u) € Z}. Then, the public key consists ofvectors neaH. The ciphertext of
0, co, is the random sum of suah vectors, which is also ne&t. The ciphertext
of 1, ¢;, is a random vectdR". One knowingu can distinguish the ciphertext of 0
from the ciphertext of 1 by determining, u) is nearH or not.

12.4.1 Description

Ford € R, let frc(d) denoteld — [d]|, which stands for the distance dffrom the
integer sekZ.
The schem@D is described as follows:

Scheme 12.4.XAD [AD97]). All the participants agree with the parameters
m = n®, R = 20(M0a" ' andr = n~3,

Setup(1"): Given the security parameteoutput_L.

KeyGen(paran): Chooseu « B(1). Choosexy,...,Xm <« {Xx € B(R) | {X,u) €
Z}. Choosey; j < B(r) uniformly atrandomfor=1,...,mandj =1,...,n.
Computez; = Z?:l yij fori=1,...,m. Then, comput@; = X; + 7. Letig be
the smallest for which the width of parallelepiped spanned &y, ..., &n
is at leasin 2. Forj=1,...,n,letb; = &,,j. The decryption key iskk = u
and the encryption key isk= (ay, ..., an, io).

Enc(ek= (a1, ..., am,ip), msg=1t): Lett € {0, 1} be a plaintext.

e To encryptt = 0, choosee € {0, 1} and compute = Ae mod B, where
B=[by,..., by
e To encryptt = 1, choosec < P(B). The ciphertext i<.

Dec(dk = u, ct = ¢): For areceived ciphertext, compute= (c, u). Output O if

[frc(d)| < 1/n, 1 otherwise.

Obviously, the ciphertext of 1 is decrypted as 0 with probability about
2/n. In order to eliminate the decryption errors AD, Goldreich, Goldwasser,
and Halevi [GGH97d changed several procedures. We denote the scheme by
AD-GGH.

Scheme 12.4.2AD-GGH [[GGH973). All the participants agree with the param-
etersn, m= n3, R = 20("og") gndr = n~3.

Setup(1"): The same aAD.Setup
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KeyGen(paran): It choosesu, x;, andz, computess; = X; + z, selectdg in
the same manner &D.KeyGen does. In addition, pick an index uniformly
at random from all indices for which (&, u) is odd. The decryption key is
dk = u and the encryption key iBk= (ay, ..., am, o, i1).

Enc(ek= (ai,...,am,ig,i1),msg=1): Lett € {0, 1} be a plaintext. Choosee
{0,1)™ and compute = Ae+t- &,/2 modB, whereB = [by,..., by].

Dec(dk = u, ct = ¢): For areceived ciphertext, compute= {c, u). Output O if
[frc (d) | < 1/4, 1 otherwise.

12.4.2 Security

The security oAD andAD-GGH is based o®(n'1)-uSVP.

Consider the following two games: The first game is the original IND-CPA
game. In the second game, we replace the public key with the uniformly cho-
sen one, that isay < B(R). Roughly speaking, if the adversary distinguishes
two games, we can verify a vectpris near to the set of hyperplanes= {x €
R" | (x,u) € Z} or not. Exploiting this power, the security is reduced from uSVP
with approximation factoyy = O(n!Y). For the detailed proof, see the original
paper AD97].

12.4.3 Attacks

The schemeé\D has a fatal drawback in the real world: huge public key of bit
sizeO(n%). The size of the public key is approximately 2Gb even when 32.
Nguyen and SterrNS9q analyzed the scheme with realistic parameters by the
LLL algorithm.

Hall, Goldberg, and SchneieHGS99 examined the CCA1 attacks against
several public-key encryption schemes based on combinatorial problems includ-
ing AD-GGH. They proposed the CCAL attacks which retrieves the secret key
of AD-GGH. Izmerly and Mor [IM06] gave the CCAL attacks again&D and
AD-GGH.

These two attacks employs the above idea in the security reduction. If one
has a decryption oracle, one recognize the set of hyperplanéssing the set of
hyperplanes, one can extract the secretikkey

12.5 The Goldreich—Goldwasser—Halevi  Encryption
Scheme

At the same time of the improvement ab [GGH974, Goldreich, Goldwasser,
and Halevi proposed their new encryption sché&®H. Their sales point is signif-
icantly small size of the public ke@(n®) (still larger than conservative encryption
schemes).
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(We note that S@, Charnes, and Martin rediscov@GH as the lattice version
of the McEliece encryption scheme. S&&CMO0]].)

Roughly speaking, their idea is as follows: The secret key is a “good” Basis
of arandom latticé., which corresponds t6. The public key is a “bad” basiB =
RU™! of the random lattice, wherd is a unimodular matrix an@ corresponds
to G’. The message is encoded into theffiogent vectors. Then, the ciphertext
is p = Bs+ x wherex is a small random error vector, which resembles to the
ciphertext of the McEliece encryption scheme. To decgyfirst apply the round-
off algorithm, that isd « [R‘lp]. Then,d will be R-1Bssince the errox is short

andRis good. MultiplyingB~R to d, we can obtairs.

Why it works:  The inversion algorithm computas= U LR‘1p1 andx = p-Bs,

whereU = B™1R. Hence, we should consid%R‘1 p], becausex is computed
automatically froms. We have that

|[R'p| =|RY(Bs+x)]=|U"s+Rx].

SinceU is unimodular,U~1 is also unimodular. Thus, the computation correctly
works Wher{R‘lx] =0, thatis|R72x||_ < 1/2.

Observe thaR™! = (R"T)T. Then, we only need to show that a babis R™"
of the dual latticeA™ is short. IfT is short, we have the following lemma ensuring
the correctness.

Lemma 12.5.1.Let B be a basis of am-dimensional latticeA. LetT be a basis
of a dual latticeA* such that||T|| < L. For anys € Z" and anyx € R" with
IIX|| < 1/2L, we have

[TT(Bs+x)|=T"Bs

Proof. SinceT = [t4,...,ty] is a basis of the dual lattic&*, we have(t;, BS) € Z
for anyi € [n] ands € Z". Thus, T Bs = ((t1, BS), ..., (th, Bs)) € Z". Hence, we
only need to show thaff ™ - x| . < 1/2, thatis, for any e [n], [(ti, X)| < 1/2.

By the hypothesis of, we havé|tj|| < L. Therefore, we have that

[Kti, 01 < [Itill - IXIl < L~ (1/2L) = 1/2,

which completes the proof. m|

12.5.1 Description

The key-generation algorithms vary and the authors defined two key-generation
algorithms:

1. KeyGenl: This algorithm chooses a “random” lattice: Gener&e «
{-I,-(-12),...,1-1,1}™" wherel is a small integer, say 4.
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2. KeyGen2: This algorithm chooses a “rectangular” lattice: Generate noise ma-
trix R « {—I,...,}™™ wherel is a small integer, say 4. Then, compute
R « R’ + ki, wherek is a large integer, say/n.

Scheme 12.5.2GGH).

KeyGen(1"): It outputs B and R, which spans the same lattice, by using
KeyGenl or KeyGen2.

Enc(B, 9): It first choosex « Dy, whereD, € Z" and each element B, is
short. Then, the ciphertext = Bs+ Xx.

Dec(R, p): The decryption algorithm computes= B‘lR[R‘1 p} and outputs
it.

12.5.2 Attacks

The schem&GH has no security proofs. NguyeN¢u99 reported a weak point
of GGH: the error vectok is chosen fronD,, = {—c, o}". He solved the challenge
by the authors o&6GH up ton = 350 and gave the partial solution evenffior 400.
Hence, the error vector should be chosen filogn= {-o, —(0c - 1),...,0 - 1,0}

After several years, Lee and HahibHO8] solved theGGH challenge of pa-
rametemn = 400 completely using Nguyen’s partial solution. This demonstrates
the security parametermust be large enough.

12.5.3 Micciancio’s Variant

In 2001, MicciancioMic0Q1] gives the dual of the scheme. We give the details of
the scheme.

Scheme 12.5.8GGH-Mic).

KeyGen(1"): It first generateR as inKeyGen1l or KeyGen2. It next computes
an Hermite normal fornB of R. Then, the public key i8 and the secret key
is R.

Enc(B, x): The message vectorise Dy. Then, the ciphertext is = x mod B.

Dec(R, u): Applying the nearest plane algorithmuavith R, it obtains the clos-
est vectoiRsto the vectou. Then outpuix = Rs— u.

We note that the scheme can be considered as a lattice analogue of the Nieder-
reider encryption scheme. Micciancio’s main idea is use of Hermite normal forms
(HNFs). The benefits derived from the HNFs are simplifying the randomizing
method and reducing the sizes of the public keys and the ciphertexts. First, since
the Hermite normal form of the basis is computed deterministically, we can ig-
nore the “bad” randomness of the public keys. Second, the Hermite normal form
is upper triangle and its non-diagonal elements are smaller than the corresponding
diagonals, whose product is at moS¥°9". Hence the size of ciphertext is now
O(nlogn).
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We finally mention the improvement by Plantard, Rose, and Susilo, which
speeds up the decryption procedure of the cryptosystem [F5&e0d9 for the de-
tailed analyses and the experimental results.

12.5.4 The Variant by Paeng, Jung, and Ha

Paeng, Jung, and H®JHO3 proposed the technique to reduce the size of public
key. This very resembleSTRU detailed in later. Let us fin" = 2n and consider
Rq = Zg[X] /(X" - 1).

Their key generation algorithm first choose four polynomiialé, hy, hy € Ry.
The polynomiald; has a large cd@cient|vV2nl] in some positionj; and the other
codficients are chosen from-[,1]. The polynomialsh; are chosen from-l, 1]".
Then, the private matriR = Roty_;(R’) is

, |fr
R_[hz fz].

If the positionsj; = 1, then this matrix is in the range of thkeyGen2.

In order to randomize the matrix, they are chogen(—q/2, q/2]", which has
the inverseg in Ry This shows that there exigy andQ in R = Z[x] /(X" — 1)
such thag® gq — 1 = qQ overZ. They computed four polynomiats as follows:

P1 pZ]:[fl h1}®[9 Q]
Ps pa| |h2 f2| |Q gqf

R u-t

B =

Itis easy to verify Rop_1(U™1) has a determinant 1, singe gq — qQ = 1 overz.
They replaced the key-generation algorithnG@H with the above andR =
Rotyw_1(R") andB = Rotw_1(B’) as the secret and the public key. This drastically

reduce the length of key, the size Bfis 223kB even if we seh = 1001 and take
80-bit primeq.

Unfortunately, after four years, Han, Kim, and YedriKYO07] analyzed the
PJH variant up to = 1001. They reported they can recover the secretfXdyom
B’ within 10 minutes computations. They observed thatP, = gP1 + hy over
Z. This indicates the total system is brokehjfandq are recovered, since we can
find g from h; andq by the above equation and also other variables. In addition,
the lattice spanned by Rgt1(p2) has very short vectdr; and other vectors in the
lattice will very long asg. Using this property, they recoveréd andq from p;
heuristically. For the details, see the original pap#YQ07].

12.6 NTRU

Although we already introduced this encryption schemEmapter Y we review

it in the context of the lattice-based encryption schemes. See the introduction of
NTRU in[Secfion 9.1
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12.6.1 Description

For details, see the original papdiRPS984 and the proposals of the parame-
ters HSO0Q HGSWO05HHGP 07, WHGH™ 08, HHHGWO(09.

For a positive integen which is often set as a prime, NTRU is defined on a
guotient ringR = Z[x] /(X" — 1). For a positive integer or a small polynomégiwe
denoteZ[x]/(q, X" — 1) by Ry.

Intuitively, the security is based on the hardness to factor a product of two short
polynomials inRy.

Scheme 12.6.INTRUEnNcrypt). Letn denote the dimension &. The subsets of
Ray L, Lg, Lm, Lr, and Lr are defined later. They are used for key generation,
encryption, and decryption.

Setup(1"): Given the security paramete?, butput 1'.

KeyGen(param= 1"): Choosed « L andg « Lg with the constrain thaft is
invertible inRy andRy. SetFq « f~1in Ry. Computeh « p® g® Fqin Ry.
The public key ish and the secret key fs

Enc(ek=h,msg= m):. The plaintext ism € £,. Generate a random polyno-
mialr « £L; and comput&€ < h®r + min Ry. The ciphertext ig.

Dec(dk = f,ct = ). The ciphertext i€ € R;. Computea’ « f ® cin Ry. Com-
putea « peger+femin Rfroma’ by using a centering algorithm. Compute
Fp « f1in R,. Computem’ — Fy® ain R,. The obtained plaintext isy’.

The decryption correctly works since the parameters are chosen carefully to
ensure thaa = peg®r +f ® min Rwith high probability. We omit the details of
the parameter setting; see the original paper or the papers on instant/BiRBS84
WHGH"08 [HHHGWQ09.

Let 7 denote{-1,0,+1}". 7 (d1,d;) denotes the subset @f such that each
polynomial in7(d, d2) has exactlyd; codficients set to 1 and, codficients set
to —1. For an integea and a subse$ C Ry, we defineaS as{af : f € S}. For a
subsetS C Ry, S* denotes the set of the polynomialsSrwhich have the inverses
iNRg, i.e,8*={feS: I 1eRy.

There are five instantiations of NTRU, NTRU-199BIRS98, NTRU-
2001 HSO(, NTRU-2005 HGSWO0%, NTRU-2007 HHGP'07], and NTRU-
2008 WHGH*08, HHHGWOQY. For simplicity, we only consider NTRU-1998
and NTRU-2008 in this paper. The following table summarizes the parameter sets
of these instantiations.
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Parameter Sets q p L Ly Lm L Lr
NTRU-1998 ¥ 3 7(ds, df — 1) 7(dg, dg) T 7 (d, dr)

NTRU-2001 prime 2« {1+poF:Fe L} B(dg) B B(dr) B(dr)
NTRU-2005 prime 2 {1+p®F:Fe L} B(N/2)* B X(dy) X(dg)
NTRU-2007 . 3 {l+poF:Fe L} 7(df,df — 1) 7(di,df —1) 7(ds,df —1) 7(d¢,df — 1)
NTRU-2008 A 3 {(1+p®F:FeLry  T(dgdg) T 7 (d, o) T (dr)

Interpretation as the Micciancio variant of the GGH encryption: Here, we
note an interpretation in Micciancio and Goldwas$4602] and Micciancio and
RegevMRO§]. We have already defined the NTRU latti@®S97] in
For a secret keyf(g) and a public keyn, the NTRU latticeA, is defined as

An = L(H) = Aq(C) = Ag(A),
where

4 _ [Robe-1(1)  Rote_1(0)

B Rotw_1(h) Rotw_1(q)|’
C=[Rof,_,(f) Rotl,_,(p®g)|.
A= [— Rot(h) Rot(l)].

Notice thatH is indeed an Hermite normal form because [0,q - 1]". Notice
also thatAp contains As the consequence, it contains the short vetitpig), since
—-f®h+ pg=0 (modq).

Consider the vectof, m) and reduce it modulél.

=TI Rotwn_1(1) Rotn_1(0)
[ m ] mod [Rotxn_l(h) Rotxn_l(q)]

0
m+her modq}'

This indicates the encryption procedure corresponds to that of Micciancio’s variant.

12.6.2 Attacks

In the next year, Coppersmith and Shari@S97] proposed a lattice-based attack
against NTRU using the above notions. They studied NTRU lattices and observed
that a secret key comprises of a half of a short basis of the NTRU lattice which
is generated by the correspondent public key of the cryptosystem. They also ob-
served that a ciphertext is the remainder of the concatenation of a message vector
and a random vector modulo the NTRU lattice. MMaly99, , see Jaulmes and
Joux BJO(), Han, Hong, Han, and KwoiHHHKO3], Howgrave-Graham, Nguyen,
Pointcheval, Proos, Silverman, Singer, and WhH&NP 03], Meskanen and
Renvall MRO€], and Gama and NguyelNO7].
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12.7 The Regev03 Encryption Scheme

Regev|Reg04himproved the Ajtai-Dwork public-key encryption schem. The
underlying assumption is the worst-case hardness of uSVP with a fagibp).
We can consider the scheme as a 1-dimensional versiaB-@GH.

12.7.1 Description

Scheme 12.7.1mR03 [Reg04hKTXQ07]). All the participants agree with the pa-
rameters, r, ands(n) = w(n**" /logn), the precision 2" and the size of the
plaintext space. We defirté, = {h e [ VN, 2VN) : frc (h) < 1/(8n"m)}.

Setup(1"): Given the security paramete®, butput 1'.

KeyGen(1"): We choosén € H, uniformly at random and set= N/h. Choos-
ing e € [2/8(n), (2V2)/5(n)), we samplenvaluesz, . . ., Zn from the distribu-
tion @, Wherez, = (x+y;)/h (i = 1,..., m) according to the above sampling
procedure. Lety = |[Nz] for everyi € {1,...,m}. Additionally, we choose
an indexi1 uniformly at random fronii : x; # 0 modp}. Then, we compute
k = x; mod p. The decryption key islk = (d,k) and the encryption key is
ek=(ai,...,am,i1).

Enc(ek= (az,...,am,i1),msg=1): Leto € {0,...,p — 1} be a plaintext. We
choose a uniformly random subs®tof {1,...,m}. The ciphertext isv =
(Zies & +t[a,/p]) modN.

Dec(dk = (d, k), ct = w): For a received ciphertext € {0, ..., N — 1}, we com-
puter = w/d mod 1. We decrypt the ciphertewtto | pr1k~* mod p, where
k-1 is the inverse ok in Z.

12.7.2 Security and Attacks
The security is summarized as follows:

Theorem 12.7.2.For any constant > 0, lets(n) = w(n**" y/logn) and letp(n) be

a prime such tha2 < p(n) < n'. The cryptosystemmR03 encrypts gl log p(n) |-
bit plaintext into an8n2-bit ciphertext with decryption error probability at most
2-2(*M/(M*m) | 2-2(  The security ofnR03 is based on the worst case of
O(6(n) v/n)-uSVvP.

On the attacks, we found only Izmerly and M&vIDE] gave the CCAL attack
against the original schenfR03.

12.8 The Regev05 Encryption Scheme
In 2005, Regev/Reg09 proposed a lattice-based public-key encryption scheme

based on the LWE problem. Formally, the dLVgEf) assumption is defined as
follows:
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Definition 12.8.1(dLWE assumption) For q = q(n), a distributiony, and an ad-
versaryA, define the advantage of the adversary as follows:

AdVawe@,a(n) = |PriA®s (1" = 1] - Pria’ (1" = 1],

where probability is taken bys « Zg and random coins ofA. We say
that the dLWE(, y) assumption holds if for any polynomial-time adversary,
AdVgwe(g,y).a(N) is negligible inn.

Before reviewind WE-PKE, we consider the following simple symmetric-key
encryption schemeWE-SKE based on the dLWH( y) assumption.

Enc(dk = s€ Z], msg=w € {0, 1}): It generates « Zg andx « y randomly,
and outputs&, v = (a, s) + x + w|.q/2]).

Dec(dk = s,ct= (a,Vv)): It computesd = v - (a, s) and outputs 0 ifd|, < q/4
and 1 otherwise.

Notice that the ciphertext of 0 is the sample frég,. One cannot distinguish the
ciphertexts of 0 and 1 if the dLWHg(y) assumption holds.

Regev’s encryption schemR5, is obtained fromLWE-SKE as follows: The
public key ism ciphertexts of 0. The ciphertext 805 is the random sum of the ci-
phertexts plusv|q/2]. SinceLWE-SKE is bounded homomorphic, the decryption
works correctly.

The security proof is done by as follows: The public key gamples from
As,) and the uniform distribution are computationally indistinguishable. Hence,
we can replace the public key and the random vectorszgnezq. In addition, the
random sum of the random vectors is almost uniformly distributed by the leftover
hash lemma. Therefore, the adversary cannot distinguish the ciphertexts of two
messages after the replacement.

12.8.1 Description

Scheme 12.8.ZLWE-PKE [Reg09). Define the functiort(a) = [ag/p] modq

for a € Zp. Naturally, for the vectoa = (ag,...,a) € 7\, we definet(a) =

(t(a0). ....t(a)) € Zi,

Setup(1"): On input the security parameterit outputs the random matrif €
Zg“™ asparam

KeyGen(param= A): It generatesS «— Z! andX « y™!. It outputsP =
ATS+ X e Z™.

Enc(param= A,ek= P, b): For message € Z, define the new vectow =
t(b) € Z'p. Choose a vectoe <« {0,1)™ c Zg‘ uniformly at random. The
ciphertext is the painy, c) = (Ae, PTe+w) € Zj) x Zi,.

Dec(dk= S,ct= (u,c)) . Computed = ¢ - STu € Z{q. Output the plaintext
b € Z}, with d; — t(by) € Zq is closest to 0.
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Theorem 12.8.3(CorrectnessBVW0E Lemma 7.2]) For g > bmpanda <
1/(p+/m- w(logn)), the above scheme is correct.

Proof. Notice that
d=c-S'u=Pe+w-S"Ae=X"e+w.

Let X = [X1,...,X]. Then, to prove the correctness, we need to show that for any
iell], |xiTe| < g/2p with overwhelming probability.

We first fix somei € [l]. By the constructionx « |[qy] modq, wherey «
N(0, a?/27)™. Considerx’ « |qy]. Notice that if|x'Tel < g/2p then|x" ¢ is also
smaller tharg/2p. Hence, it sffices to show thak’" el < g/2p with overwhelming
probability.

By the construction, we have thgt’ — gyl < +/m/2. In addition, we have that

IXTe <|(X —qy)Tel+dy'd <m/2+qy ¢

by the Cauchy—Schwartz bound. Singe; 5mp, it suffices to showy' e < 2/5p.
(if so, we havam/2 + qly" € < q/(10p) + 4q/(10p) = q/2p.)

Since Gaussian has a regenerativity, the random varidlglés distributed as
the Gaussian whose variance is at mosf/2r. Thus, we have that for ary e
{o, 1™,

Vo (2/5p)°
Prly"e > 2/5p] < ex (—7‘( o~ )

V2r2/5p

sincea < 1/(p+vm- w(4/logn)). i

= exp(-w(logn)),

Notes: The original Regev encryption scheme is parametrizecpby 2 and

| = 1. Kawachi, Tanaka, and XagawldTTX07] improved the ciphertext blowup
by factorO(logn) by setp = n® > 2 for some constart > 0 without changing

the public key. Peikert, Vaikuntanathan, and Wat&g\IV0§ proposed amortiz-
ing techniqud > 1. Micciancio and RegeWWR08] changed the domain of the
randomnes$0, 1,...,c}" instead of{0, 1}™.

12.8.2 Security Proof

First, we can change the real ke%;[PT] with the fake key A; PT] which is dis-
tributed overU(Zg‘“)Xm) under the dLWE assumption. If we use the fake key,
the ciphertext contains no information of a message, sid¢d[] is uniformly
distributed and it is universal as the hash functions.

Theorem 12.8.4IND-CPA Security, adapte@®eg09KTX07, PVYWOQ0{). Letm >
((1 + 6)n + 1) logq for some constani > 0. The scheme&WE-PKE is IND-CPA
secure under thdLWE(q, y) assumption.
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Combining this theorem and the argument{Section 2.4 the security is
reduced from the quantum hardness of §/\WPGapSVE.

Proof. Let e denote the advantage of the adversé@rggainst IND-CPA game.

We consider the following+1 games. IiGame;, the public key is computed as
follows: First, A « ngm. Next, take sampleS,1,...,5 « Zg andXj;1,..., X <
x™. Then, compute; « ATsj +xjforj=i+1,...,1. Inadditon, take samples
[/ o <—ZH‘. The public key isA andP = [p;, ..., f, pi+1,. .., p].

Gamey is the original IND-CPA game. In addition, ®ame), the public key is
now uniformly at random. Le$; be an event that the adversafiywins in Game;.
Then, we have that

IPr[So] — 1/2| = e and| Pr[S|] — 1/2| < 2" = negl(n).

The latter inequation follows from the leftover hash lemma [Seefion 4.3 By
using the hybrid argument, there is an index[l] such that

|PriSi—a] - Pr[Si]l > e/l - g™/

However, if there exists such index, we can solve the di\Miroblem as follows:
Take them samples A, p*) from the oracle of dLWE, problem. Then, make a
public key (A, P), wherep(j — Za” forj=1,...,i-1,p = p,andp; = ATs,- + Xj
forj=i+1,...,I. Ifthe oracle isU(ZQ*l), then the simulation is foBamej_1. If
the oracle iAs,, then the simulation is faBame;. Hence, we have that

AdVdLWE(q,X)(n) > E/l - q_5n/2/|.

This shows that

- B
€ = Adv the 2N < 1- Advaiwegy(n) + g2

and completes the proof. m|

12.8.3 Attacks

The following TB-CCAL1 attack is due to Izmerly and M@MO06] and Xagawa.

For simplicity, we consideR05 with p = 2 andl = 1. By these specification,
the public parameter i&\ € Zg*™, the secret key is € Zg, the public key isp =
ATstx e zg, the encryption of the message {0, 1} is (u, ¢) = (Ae, p'e+v]g/2])
for somee € {0, 1}™. The decryption algorithm outputs Odf= ¢ — u sis close to
0, outputs 1 otherwise. Specifically, the decryption algorithm outputglD<ifqg/4.

We describe how to extract the first coordinai®f the secret key. The other
coordinates are extracted by a slight modification. tLa@¢note|q/4]. Let us set
u = (1,0,...,0). Then, in decryption, the variabtkis set to bec — s; modq,
whereg; is the first coordinate of the secret kay,Sliding ¢, we can detect when
d is firstly larger thart since the response switches from 0 to 1. tetlenote the
value such that* — s; = t. By solving this, we have; = ¢* —t.
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12.9. THE GENTRY-PEIKERT-VAIKUNTANATHAN “DUAL"
ENCRYPTION SCHEME

12.8.4 Extensions

As mentioned in the introduction, there are several security proofs of the variant
of the schema&WE-PKE. Akavia, Goldwasser, and Vaikuntanathan showed the
key-leakage security of the scheme under dlBssumption in the smaller di-
mensiom’ < n.

Applebaum, Cash, Peikert, and Sal®CPS09 proposed a simple variant of
LWE-PKE, whereq = p? and the secret key is chosen frofi and's e AN
Zg. They showed the key-dependent message security of their variant; in the key-
dependent message CPA game, the adversary chooses a fdm(:,tinﬁg — Zp,
wherefiw(s) = (t, s) + wmod p.

In addition, Lyubashevsky, Palacio, and Sede9$1() proposed that the vari-
ant of LWE-PKE whose security is based on the subset sum problem.

12.9 The Gentry—Peikert—Vaikuntanathan “Dual” en-
cryption scheme

They observed that the “dual” @WE-PKE is also a public-key encryption scheme:
The public key is A, u = Ae) and the ciphertext is(= ATs+ x,c = uTs+ x +
w|q/2]). The decryption is done by computinig— v— e’ p= w|[g/2] - e"x + x
and rounding it.

The point is the public key A, u) is uniformly chosen fromzg*™ x Zg.
This yields an identity-based encryption by combining the GPV signature scheme

inSection 11.3sedSection 14.R We note that the distribution of the public key
(A, p) of LWE-PKE is somewhat sparse E{" x Z{"

12.9.1 Description

Scheme 12.9.1Dual [GPV09).

Setup(1"): On input the security paramete't, output the random matriA €
Zg™ asparam

KeyGen(param= A): GenerateE « DlZm,s' The encryption key igk = U «
AE € Z!. The decryption key isk = E € Z™.

Enc(ek= U, msg= b): Generates « Zj), X, « x™, andx, « x'. Compute
p= ATs+x e ZJ. In addition, compute = UTs+ x, € Z{. For message
b € Z},, computew = t(b) € Z,. Then, the ciphertext isp(c = v+ w).

Dec(dk=e,ct=(p,c)) . Computed = c— ETp ¢ Z'q. Output the plaintext
be Z'p with d; — t(bj) € Zq is closest to 0.

Theorem 12.9.2(Correctness|GPV0§ Theorem 7.1]) Lety = ¥, g > 5m+
1)ps anda < 1/(psVm+ 1- w(logn)). The above scheme is correct.
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Proof. For simplicity, we only show the correctness wheee 1. The other case
can be proved in the same manner. Notice that

_ To_ T TATc_ aly. — T
d=c-e p=u's+x+W-e A'sS—€e Xp=W+X —€ Xp.

Hence, to prove the correctness, we will show that eTxp| < g/2poverZ. No-
tice that by the construction, we haj@| < s+/mwith overwhelming probability.

To obtain the above upperbound, itfsees to show thax"el < g/2p where
X « ¥™! and for anye € Z™1 such thatlel] < svVm+ 1.

As in the previous correctness proof[Bheorem 12.8l3we replacex with
x’ andy. By the constructionx « |qy] modqg, wherey « N(O,@?/2r)™1.
Considerx’ « |qy]. Notice that if|x'Tel < g/2p then|x"¢ is also smaller than
q/2p. Hence, it sfiices to show thak’T e < g/2p with overwhelming probability.
By the construction, we have that’ — qy|| < vm+ 1/2. In addition, we have that

IXTel < (X' —ay)'el +dy'el < (m+1)/2+qly'd

by the Cauchy—Schwartz bound. Singe; 5(m+ 1)ps it suffices to showy' e <
2/5p. (if so, we haves(m + 1)/2 + qly" € < q/(10p) + 49/(10p) = g/2p.)

Since Gaussian has a regenerativity, the random varidlglés distributed as
the Gaussian whose variancé|& «?/2r. Thus, we have that for argwith ||| <
svm+1,

Prly"el > 2/5p] = exp(-w(logn)),

sincea < 1/(psVm+ 1- w(+/logn)). O

12.9.2 Security Proof

It easy show the IND-CPA security assuming the dLyyEs hard on average.
Notice thatU is distributed almost uniformly ov%gx' if s= w(logn).

Theorem 12.9.3(IND-CPA Security, adapteddPV0q). Letm > 2(n + 1) logq
ands = w(+/logm). Then the schentual is IND-CPA secure under th#l WE,
assumption.

Proof. Assume that there exists an adversdiryhat wins the IND-CPA game with
advantage.

We consider the following 3 game$amey is the original IND-CPA game.
In Games, we replace the public key withA(U) « Zg*™ x ng'. In Game,, we
replace the generation method of the challenge ciphertext as followsp' L&) (<
U(Zq x Zy). Then, the target ciphertextig'(¢' = V' + t).

Let S; be an event that the adversafywins in Game;. Then, we have that

|Pr[So] — 1/2| = €, | Pr[Sg] — Pr[S1]| < negl(n), | Pr[S2] — 1/2| = 0.

The second inequation follows frd@orollary 10.5.5and our parameter settings.
In addition, we have

| Pr[S1] — Pr[S2]| < Advaiwe(g,y)(N).

174



12.10. THE PEIKERT-WATERS “LOSSY” TRAPDOOR FUNCTIONS

Takingmsamples A, p) andl samples|, v) from the oracle of the dLWE problem,
simulate the game with the adversafy If the oracle isAs,, we have simulated
Game1, otherwise, we have simulat&bhme,. Then, it follows.

These argument show that

€ = Adv) e e 2(0) < Advaiwe( () + negl(n)

and completes the proof. |

12.9.3 Attacks

The TB-CCAL attack below follows the attack by Izmerly and Mi06] and
Xagawa.

For simplicity, we considebual with p = 2 andl = 1. By these specification,
the public parameter i&\ € Zg*™, the secret key i® € Z™, the public key is
u = Aece Zg, the encryption of the messafe= {0, 1} is (p.c) = (ATs+ Xxp,u's+
X, + blg/2]). The decryption algorithm outputs 0df = ¢ — e" pis close to 0,
outputs 1 otherwise. Specifically, the decryption algorithm output$d) 1f g/4.

The idea is same as that in the attack agaRt&t. We describe how to extract
the first coordinate; of the secret key. The other coordinates are extracted by
a slight modification. Let denote|qg/4]. Let us setp = (1,0,...,0). Then, in
decryption, the variabld is set to bec — e; modq. Slidingc, we can detect when
d is firstly larger thart since the response switches from 0 to 1. tetienote the
value such that* — e; = t. By solving this, we have; = ¢* —t.

12.10 The Peikert—Waters “Lossy” Trapdoor Functions

Peikert and WaterdW0{ defined lossy trapdoor functions (LTDFs) and all-but-
one trapdoor functions (ABO TDFs).

Intuitively, LTDFs have two mode: lossy mode and invertible mode. In invert-
ible mode, the legitimate user with a trapdoor can invert the his function. However,
in lossy mode, any user cannot information theoretically. In addition, the keys in
lossy mode and invertible mode are computationally indistinguishable.

The precise definition is given as follows: Liebe the security parameter, and
A(n) represent the input length of the functiain) represent the lossiness of the
collection. For convenience, we define the residual leajége= A(n) — «(n).

Definition 12.10.1 (Lossy trapdoor functions/PWO0§). Consider a following
schemd.osTDF = (Gen, Eval, Inv). Let us suppose thatode € {inj, los}.

Gen(1",mode): A generation algorithm, given the security parametérahd
works as follows:

¢ If mode = inj, it outputs &, t).
¢ If mode = los, it outputs &, L).
These defines the functiorig: {0, 1}* — R,.
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Eval(a, X): An evaluation algorithm, given the indexandx € {0, 1}, it outputs
fa(x).

Inv(a,t,y): An inversion algorithm, given the set ofa,{) generate by
Gen(1",inj) andy = f4(X) € R, it outputsx.

We sayLosTDF is a collection of g, x)-lossy trapdoor functions if the following
conditions hold:

Easy to sample an injective function with trapdoor: Consider &,t) —
Gen(1",inj). Then, the functiorf, is aninjectivefunction andinv with input
(at,y = fa(X)) efficiently retrieve.

Easy to sample a lossy function:Consider §, 1) « Gen(1",los). Then,fj :
{0, 1}* = R, has image size at most 2 2, that is,jfa({o, 1}*)| <2,

Hard to distinguish injective from lossy: The first outputs osen(1", inj) and
Gen(1", los) are computationally indistinguishable.

Definition 12.10.2(All-but-one trapdoor functionsBW0§). Consider a follow-
ing schemeBOTDF = (Gen, Eval, Inv). LetV, be a set of branches.

Gen(1",v*): A generation algorithm, given the security parameteardd lossy
branchv* € V,, and outputsd,t), wherea is a function index and is its
trapdoor. The inder defines the functiona(-, ) : Va x {0, 1}* — Rx.

Eval(a, v, X): An evaluation algorithm, given the index a branchv € V,, and
x € {0, 1}, it outputsga(V, X) = dav(X).

Inv(t,v,y): An inversion algorithm, given the trapdobandy = gav(X) € Ry, if
V # V* outputsx.

We sayABOTDF is a collection of 4, «)-all-but-one trapdoor functions if the fol-
lowing conditions hold:

Easy to sample an injective function with trapdoor: Consider 1) —
Gen(1",v*). Then, for any # v*, the functiong,y is aninjective function
andinv with input ¢, v,y = gav(X)) efficiently retrievesx.

Loss on the lossy branch:Consider &t) « Gen(1",v*). Then, ga\
{0,1}* > R, has image size at most 2 2%, that is,|ga.- ({0, 1}Y)| < 2¢.

Hidden lossy branch: Consider the following game: An adversafy outputs
(Vo.v1) € V2, is given a function index, where @,t) « Gen(1",v,) and
b « {0, 1}, and output®’. For any polynomial-time adversar,

‘mw:m—%

< negl(n).

Itis easy to show that LTDFs are one-way. In addition, LTDFs yields ABOTDfs
with two branches and thetime use of f,n — r)-ABOTDFs with branch set
V = {0,1} yields (,n - Ir)-ABOTDfs with branch seV = {0,1}'. Furthermore,
they yields pseudorandom generators, collision-resistant hash families, and thus
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one-time secure signature schemes. (F¥&0§ Section 3]). Using them, they
construct encryption schemes and oblivious transfers.

Peikert and Waters instantiated LTDFs and ABO TDFs based on the DDH
assumption and the LWE assumption. Following their result, many researchers
proposed LTDFs and ABO TDFs under several assumptions.

It is worth to note how we obtain the idea of lossy trapdoor functions. Recall
LWE-PKE. The ciphertext ob with a randomnessis

FREIR N
c| [PT la/plb

and a legitimate receiver can retrieve the vettoather thare. To retrievee, we
setl = mand consider the following function
u A 0

T -e= .
cl [P +la/p)Im la/ple
Obviously, we can retrieve. This is the main idea of Peikert and Waters and
the DDH construction is done by the same idea. However, to apply this idea to
LWE-PKE, they need to circumvent several obstacles, for example, the noise may

leak the information and we cannot ensure lossiness. We describe the circumven-
tions in the following sections.

e+

PT e+

12.10.1 Descriptions of Lattice-Based Lossy Functions
Matrix Concealer

We start with recalling matrix concealer, which makes the function index. This
definition is as known asatrix encryption

GenConceal, (1", m,[): The inputs are the security parametér and integers
m, | = poly(n). First generate two random matrics— Zg™ andS « ZQX'
and an error matrixX « ™. Then outpuC = [A; PT], whereP = ATS +
X ezi™.

Although notation is changed, this algorithm is the same as the key-generation al-
gorithm of LWE-PKE. Hence, the outpu€ of GenConceal, is computationally
indistinguishable fromJ (Z{*"™) if m,1 = poly(n) and dLWE,, is hard on aver-
age. The proof is obtained by the hybrid argument on the columBs of

The following lemma will be used later.

Lemma 12.10.3[PWO0]). Leth,w, p be positive integers. Let> 4ph, let1l/a >
8p(m + g) for someg > 0, and lety = ¥,. Then except with probability at most
w - 279 over the choice oX « ™, the following holds: for every row vector
e=(eL...,en) € {0,1}™ each entry OEXe € T has absolute value less thglg.
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Lossy TDFs

For a while we assume that = 2X for somek > 1. Define a special row vector
g=1[1,2,...,209P-1 = p/2] € ZK. Then, we defin& = I, ® g € ZQth, where®
denotes the Tensor product. lllustratively, we have

g0 ... 0
0 ... 0
e=|,
00 ... g

By using 2-base representation, we can define the invertible fureticote(w) =
e = (en...,a) € {0, such thatg - e = w for anyw ¢ Zp. We mapw =
(Wi, ..., W) € Zg into e = encode(w) € {0, 1}"k and vice verse. Then we have that
Ge=w.

The description of the construction is given as follows:

Scheme 12.10.4[PW0{). Let us sem = Ik.

Gen(1", mode € {inj, los}): The algorithm first invokessenConceal, (1", m, 1)
to generate a matri€ = [A; P'] € Z&”*')Xm and a trapdoo8 € Z™!, where
P=ATS+X.

e If mode = inj, output the function indeX = [A; PT + M] € Z
the trapdoofS, whereM = t(G).
¢ If mode = los, output the function indeX = C.

Eval(Y,e): LetY be a function index and € {0, 1}™. Outputz= Yee Zg‘“).

Inv(S, 2): Parsez as (1,v) € Zj x Z;. Then computed « v — STu and let
w = t1(d) € Z\,. Finally outpute — decode(w) € {0, 1}™.

gn+|)><m and

The index-generation algorithm is the sama\A4&-PKE.KeyGen if mode =
los. But, in the case whemode = inj, the key is changed tB+ M. Crucially, this
change allows us to recovemith the trapdoosS. It is obvious that the adversary
distinguishes p; PT + M] from [A; P] yields the adversary distinguishe&;[P']
and [A; P'T], whereP’ is drawn fromZH“X' uniformly at random.

The correctness follows from the correctness conditionsVéE-PKE. The
main part is the following lossiness proof.

Theorem 12.10.5[PW0Q{). Letq > 4lplogpandy = ¥, with 1/a > 16pm =
16lplog p. Then the above algorithms define a collection of almost-ahfraysy)-
lossy TDFs under thdLWE;, assumption, wheren = nlog p and the residual
leakager = m—m' is
m

r< l—(n+(n+ I)Iogp(q/p)).
Proof. Lossiness is computed as follows: Lét= [A/PT = STA + XT] be a
function index produced bgen(1", los).

Eval(Y,e) = (u,v) = Ye= (Ae, ST Ae + XTe).
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The number of possible values fois at mosq". Givenu, the number of possible
values foris exactly the number of possible values ¥te. The latter quantity is
atmost (1q/2p)' < (9/p)'. Hence the total number of outputs is at mgfstq/p)'.
Therefore,

nlo m
99, ™ log a/p)

r<n-logg+!-log(@/p)=m- llogp logp

= l—m(n+ (n+ |)|09p(Q/p))-
O

We omit how to construct all-but-one trapdoor functions from dlji/E&s-
sumption but note they construct directly all-but-one trapdoor functions from as in
the above rather than general construction we already mentioned. For the details,
seePWO09q.

12.10.2 Description of Encryption Scheme

After the constructions of lossy TDFs and all-but-one TDFs, they gave an IND-
CCAZ2 secure encryption scheme based on them. We review the construction here.

Scheme 12.10.6PW-PKE [PW0§). Let LosTDF = (L.Gen,L.Eval,L.Inv) and
ABOTDF = (A.Gen, A.Eval, A.Inv) be (@1, x)-lossy and {, «')-ABO trapdoor func-
tions with branch se¥ = {0, 1}V. We require the total residual leakage is

p+p =21-k—-K <A-4a,

for somea = a(n) = w(logn). Let OTS = (0O.KeyGen, 0.Sign, O.Ver) be a one-
time secure signature scheme with verification-key space {0, 1}V. Let H be
a universal family of hash functions frof0, 1}* — {0, 1, where 0< | < a-

2log 1/ for some negligible: = ¢(n). The message space{@s 1}'.

KeyGen(1"): Given 1, it generates g,t) « L.Gen(1",inj), (@.t") «
A.Gen(1",0"), and a hash functioh « . The encryption key ik =
(a @, h) and the decryption key gk = (t,t", eK).

Enc(ek= (a &, h),msge {0,1}'): It generates a key pairviksk «
0.KeyGen(1"), choosex « {0, 1}* uniformly at random. It computes

¢1 = L.Eval(a, x) = fa(x), c2 = A.Eval(@’, vk X) = ga vk(X), €3 = ma® h(X).

Finally, it signs the triplet;, co, c3) aso « 0.Sign(sk (c1, C2, C3)). Then, it
outputs the ciphertextt = (vk, ¢y, C, C3, 0).

Dec(dk = (t,t’,eK), ct = (vk c1, Cp, C3,0): It first checks that
O.Ver(vk, (c1,Co,C3),0) = 1. |If not, it outputs L and halts. It then
computesx « L.Inv(t,c1), and checks that; = fa(X) andca = g vwk(X); if
not, it outputsL and halts. Finally, it outputs) < ¢z @ h(Xx).
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Theorem 12.10.7([PW0& Theorem 4.2]) The above scheme is IND-CCA2 se-
cure.

We only give the games in the proof and intuitions.

e The gameGamey is the original IND-CCA2 game, which induces the target
ciphertextct” = (vk', ], ¢3, 3, o).

e In Game;, they changed the decryption oracle which rejects the goery
(Vk c1, ¢, c3,0) if vk = vK'. If it happens, the one-time security OfTS is
violated.

e In Gamey, they replace the lossy branch With vk*. The distance between
Game; andGamey, is ensured by the hidden branch property.

e In Games, the decryption oracles retriewe by A.Inv(t’, vk, c;) instead of
L.Inv(t", c1). This change makes noftkrence sincé; andga vk is injective.

e In Gamey, they replace the injective function with a lossy function. The dis-
tance betweeGame; andGames is ensured by the “hard to distinguish in-
jective from lossy” property.

e In Games, they replace the componesitwith a uniformly random string over
{0, 1}'. Sinceh is extractor, this only makes a statisticaffdience.

We note that we have no need to sign This observation is due to Matsuda,
Nishimaki, and TanakaMNT10], who proposed an IND-CCA2 secure proxy re-
encryption scheme based on the LTDFs based on the DDH assumption.

Notes: Unfortunately, the above scheme instantiated from the dLWE assumption
has very huge public key, s&¥n3), and thus it is not convenient to use the scheme
in the real world. However, the power of lossiness is curious and attractive, and
the proof techniques are very useful and powerful. We require the nfiiceet
construction of an IND-CCA2 secure encryption scheme.
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13

Key-Encapsulation Mechanism

Organization: [Section 13.land[Section 13 Previews the definitions on key-
encapsulation mechanism (KEM) and data-encapsulation mechanism (DEM), re-
spectively.[Section 13.3eminds us of the construction of PKE from KEM and
DEM, that is, the KEMDEM framework. [Secfion 13 Hgives the description of
Peikert's KEM. We give a review of ideal-lattice-based versions of the encryption
schemes by Sted) Steinfeld, Tanaka, and Xagawd3ection 13.b

13.1 Definitions of Key-Encapsulation Mechanism

13.1.1 Model of Key-Encapsulation Mechanism

A key-encapsulation mechanism schekteM with associated key spad¢g, is a
triplet of algorithms Gen, Encaps, Decaps).

Gen(1"): A key-generation algorithm, giver' loutputs a pair of an encryption
key and a decryption keek dK).

Encaps(ek msg: An encapsulation algorithm, givesk, outputs a kek € K,
and a ciphertextt.

Decaps(dk, ct): A decapsulation algorithm, givedk andct, returns a kek or a
special symbolL.

Correctness: The correctness of a key-encapsulation mechanism is defined as
follows: With overwhelming probability the ciphertext of any kkeye K, under
an encryption kegkshould be decrypted intq where the probability is taken by
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coins ofGen andEncaps. Formally, this requirement is denoted

_ (ekdK) « Gen(1");
Prik# k: (k ct) < Encaps(eK); | < negl(n).
k « Decaps(dk, ct);

13.1.2 Security Notions

We adopt the standard security notiolifHKO6], indistinguishability of cipher-
texts under several attacks. Roughly speaking, we say the scheme has indistin-
guishability if any polynomial-time adversary cannot distinguish a valid key
from a random ke with the ciphertextt of a valid key. In chosen plaintext at-
tacks (cpa), the adversary could only encrypt its chosen message and cannot use the
decryption oracle. In chosen ciphertext attacks (ccal), the adversary could query
to the decryption oracle until the adversary commits the target messages. In chosen
ciphertext attacks (cca2), the adversary could query to the decryption oracle after
it receives the target ciphertext.

We describe the formal definition as follows: Consider the experiment
Expndak (n) between the challengat and the adversaryd, where atk €

KEM,A
{cpaccalccal.

: ind-atk (y-
Experiment EXpign (1)

Setup Phase:The challenger takes the security parametemd obtains
param « Setup(1") and €k dk) < Gen(param). It givesparamandek
to the adversaryA.

Learning Phase 1: The adversary can issue queries to the oracle ifatk
{ccalcca3d. The oracleDec receives an inputt and returnsk «
Decaps(dk, ct).

Challenge Phase:The adversaryA query to the challenger. The challenger
generates a random k&y « Ky and a pair of a valid key and ciphertext
(kq, ct) « Encaps(param eK). The challenger flips a coim« {0, 1}, sets
k* « kp, and sendsi(, ct*) to the adversary.

Learning Phase 2: The adversary can issue gueries to the oracle ifzatk
cca2. The oracl®ec receives inputt. If ct = ct, the challenger outputs
0 and halts. Otherwise, the oracle retukns- Decaps(dk, ct) to A.

Guessing PhaseFinally, A outputs a guesk’ € {0,1}. If b’ = b, the
challenger outputs 1, otherwise 0.

Definition 13.1.1. Let KEM = (Setup, Gen, Encaps,Decaps) be a key-
encapsulation mechanisl an adversary, and a security parameter. We define
the advantage qf as

. . 1
Advigat ) = [PrlExpiatm = 1] - 5.
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We say thatkKEM is ind-atk secure ifAdvigea () is negligible for every

polynomial-time adversaryl, where atke {cpa ccal cca3.

13.2 Definitions of Data-Encapsulation Mechanism

13.2.1 Model of Data-Encapsulation Mechanism

A data-encapsulation mechanism schdbiv with associated key spaég, and
message spadd, is a triplet of algorithmsGen, Encaps, Decaps).

Gen(1"): A key-generation algorithm, given the security paramefeolitputs
a keyk € K,,.

Encaps(k, msQ: An encapsulation algorithm, given a k&and a datansg e
Mp, outputs a ciphertexdt.

Decaps(k, ct): A decapsulation algorithm, giveeandct, returns a messagesg
or a special symbal..

Correctness: The correctness of a data-encapsulation mechanism is defined as
follows: With overwhelming probability the ciphertext of any messatggin the
message space under an encryptionkskiould be decrypted intmsg where the
probability is taken by coins oBen, andEncaps. Formally, this requirement is

denoted
k — Gen(1");

Primsg+# msg: ct < Encaps(k, msg; | < negl(n).
msg« Decaps(k, ct);

13.2.2 Security Notions

We adopt the standard security notio®DUR97 HHKQ6], indistinguishability

of ciphertexts under several attacks. Roughly speaking, we say the scheme has
indistinguishability if any polynomial-time adversary cannot distinguish a valid
keyk; from a random ke with the ciphertextt of a valid key.

In chosen plaintext attacks (cpa), the adversary could only encrypt its chosen
message and cannot use the decryption oracle. In chosen ciphertext attacks (ccal),
the adversary could query to the decryption oracle until the adversary commits the
target messages. In chosen ciphertext attacks (cca2), the adversary could query
to the decryption oracle after it receives the target ciphertext. In these attacks the
adversary could query to thencryptionoracle.

There are other attacks. In addition, Herranz, Hofheinz, and Kiltz formalized
one-time security for DEM, which was already appeared in the other names in the
literature ICS03 [KY06]. In one-time attacks (ot), the adversary has no oracles.

In one-time chosen-ciphertext attacks (otcca), the adversary could query to the
decryption oracle after obtaining the challenge ciphertext. In there attacks, the
adversary has no encryption oracle.
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We describe the formal definition as follows: Consider the experiment
Exproa (n) between the challenge® and the adversaryd, where atk €
{ot, otccacpa ccal ccal.

; ind-atk (-
Experiment Expg £ 7 (n):

Setup Phase:The challenger takes the security parametend obtains
param« Setup(1") and gk dk) < KeyGen(param. It givesparamand
ekto the adversaryA.

Learning Phase 1: The adversary can issue queries to the encryption ora-
cle if atk € {cpaccalcca3. In addition, it can query to the decryption
oracle if atke {ccal cca3.

e The oracle Exc receives an inputmsg and returnsct «
Encaps(k, msg.
e The oracléDec receives an inputt and returngnsg« Decaps(k, ct).
Challenge Phase:The adversary A query two distinct message

msg,msg € M, to the challenger. The challenger flips a coin
b « {0, 1} and sendst* « Encaps(k, msg,) to the adversary.

Learning Phase 2: The adversary can issue queries to the encryption ora-
cle if atk € {cpa ccal cca3. It also can query to the decryption oracle if
atk € {otccaccaj.

e The oracle Exc receives an inputmsg and returnsct «
Encaps(k, msg.

e The oracleDec receives an input. If ct = ct*, the challenger outputs
0 and halts. Otherwise, the oracle retumsg < Decaps(k, ct) to
A.

Guessing PhaseFinally, A outputs a guesk’ € {0,1}. If b’ = b, the
challenger outputs 1, otherwise 0.

Definition 13.2.1. Let DEM = (Gen, Encaps, Decaps) be a data-encapsulation
mechanismA an adversary, and a security parameter. We define the advantage
of A as

. . 1
AdvEat ) = [PrlExplat ) = 1] - 5

We say thatDEM is ind-atk secure ifAdvga% () is negligible for every

polynomial-time adversaryl, where atke {ot, otccacpa ccal cca3.

13.3 Hybrid Encryption

We here briefly review the framework of the hybrid encryption, the construction of
a public-key encryption scheme from a key- and data-encapsulation mechanism.

Scheme 13.3.1Hybrid Encryption) Let KEM = (K.Gen, K.Encaps, K.Decaps)
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be a KEM and leDEM = (D.Gen, D.Encaps, D.Decaps) be a DEM. Then, the
obtained schemeKE = (P.KeyGen, P.Enc, P.Dec) is defined as follows:

P.KeyGen(1"): Output gk dk) < K.Gen(1").

P.Enc(ek msg: Obtain ct;)) <«  K.Encaps(eK), obtain ct; «
D.Encaps(k, msg, and outputgt = (cty, cty).

P.Dec(dk, ct = (cty, cty)): Retrievek < K.Decaps(dk, ct;) and outputsnsg «
D.Decaps(k, ctp).

Herranz et al. showed the following results. The final statement is already
proved by Cramer and ShougG$043.

e For any atke {ot, otcca cpa ccal ccag, if KEM is ind-cpa secure aridEM is
ind-atk secure, then the obtainBHE is ind-cpa secure.

e For any atke {ot, otccacpa ccal ccag, if KEM is ind-ccal secure arbEM
is ind-atk secure, then the obtaineKE is ind-ccal secure.

e For any atke {ot, cpa ccal, if KEM is ind-cca2 secure ardEM is ind-atk
secure, then the obtain®KE is ind-ccal secure.

e For any atke {otccgcca3d, if KEM is ind-cca2 secure andEM is ind-atk
secure, then the obtain®KE is ind-cca2 secure.

13.4 Peikert's Key-Encapsulation Mechanism and
Public-Key Encryption Schemes

We have already seen that the key generation and encryption in the McEliece en-
cryption scheme resemble to the key-generation method of the Regev encryption
schemdWE-PKE. Why cannot we use the lattice-based analogy of the McEliece
encryption scheme? Can we repld&ec F™™ with A € Zg*™ and the distribution
U(S(m, t)) with y™?

Gentry, Peikert, and Vaikuntanathd@®RV0§ pointed out that the short basis
ofthe IatticeAg(A) also exploits the latticAq(A). UsingT, we can solve the BDD
over the lattice\q(A); that is, givenp = AT s+ X, we can recovesandx! (We will
describe the simplified variant later.) One-wayness of this function, with respect to
the input distributiorJ (Zg) x x™, is apparent under the sSLWE assumption.

We can interpret this results into the analogy of the McEliece encryption
scheme as follows: Instead of the Hamming weight, we consider the Lee weight
(see Roth’s textbookHot0d). For an element € Zq, we define the.ee valugc]|

by

of = (o 0<c<g/2
“lg-c g2<c<q-1

as we already defined the absolute vdtibor ¢ € Zy. ThelLee weighf a vector
C = (C....Cn) € Z§is defined byy!", |cj|. This is just thel; norm of ¢ if ¢
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is embedded in4qg/2,9/2]". The recovering algorithm in Gentry et al. shows, a
trapdoorT of A enables us tdecodea received worg = AT s+ x modqinto sif
theLee weighof x is small.

13.4.1 Basic Schemes

Peikert Pei09¢ improved the invert method of the LWE trapdoor function men-
tioned in [GPV0§. Now, the obtained scheme has a flavor of the GGH encryption
scheme ifSection 12.6

Scheme 13.4.{LWETrap [Pei09¢).

Setup(1"): Given the security parametet, butput 1.
KeyGen(1"): UsingExtLattice, obtainA € Zg™ andT € Z™™, where|[T|| < L.
Eval(ek= A, msg= s): Letse Zj. Choosex « ¥j and computep « éATs+

x € T™ Outputga(s,X) = p=Lq - p| mod(q'.
Inv(dk =T, p): Givenp = ga(s, X) € Zg?, let p < p/q € T™, computey «

TT. [TT p(] mod 1, and computes from y by solvingy = éATs e T™. (It

can also outpux’ « p’ — (—l]ATS eTM)

The correctness of decryption follows from the similar argument in the proof

of[Lemma 12.5]1 For appropriately chosan we can show that the norm afis
short.

Theorem 13.4.2Correctness/Hei09¢ Lemma 4.2]) Letq’ = g'(n) > 2L vVmand
1/a > L - w(4/logn). Then for anys € Zg and forx drawn from¥?", the inversion
algorithm on inputp = ga(s, X) correctly outputss with overwhelming probability
over the choice ox.

Using this trapdoor function, we can construct key-encapsulation mechanism
with key spacd0, 1} which resemble®ual in

Scheme 13.4.3LWE-KEM, combinded,Pei09¢ and [Pei09)). Let LWETrap =
(L.KeyGen, L.Eval, L.Inv) as in the above.

Gen(1"): Generate A, T) <« L.KeyGen. Generatd) « ng'. It outputsek =
(A,U) anddk = (T, eK).

Encaps(ek): Choose a keyk « {0,1}'. Generate a random vecter« Zg
and generatxp < ™ and xy « ¥'. Then computep « ga(s, Xp) =
L.Eval(A, s, Xp) andVv « gy(s, xy). Computec « v+ |q'/2] k modq'. Fi-
nally, outputk andct = (p, C).

Decaps(dk, ct = (p, €)): Retrieves « L.Inv(dk, p). Computev «— UTs/q mod
1. Then, computel « ¢ — |gq'v] modq . Finally, outputk « t=1(d).

Theorem 13.4.4.The above KEM isnd-cpasecure ifdLWE(q, y) is hard. More
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precisely, for any polynomial-time adversafy

-
Adv:_nWEc-?(aEM,ﬂ(n) < AdVdLwe(,) () + negl(n).

Proof. Consider three games;

Gameg: The original game.

Game;: Inthe game, we change the generation method\{dd, p, andv; Take
m+ | samples fromAs,. Let us name the firsh samples A, p) and U, V).
Computep = | p] modq’ andv « |g'v] modq and use them in the game.

Games: Inthe game, we change the generation method\fdd, p, andv; Take
m + | samples fromJ(Zg x T). Let us name the firsn samples 4, p) and
(U,v). Computep = |’ p] modq andv « |q'v] modqg’ and use them in the
game.

Apparently, the statistical distance betweBameg and Game; is at most
negl(n) since they only dfer the generation method @& In addition, the distance
betweerGame; andGame; is at mostAdvqwe(g,)(N); otherwise, A distinguishes
Asy andU(Zg x T). This completes the proof. O

13.4.2 CCA Schemes

Using the LWE trapdoor function, Goldwasser and Vaikuntanatk&vi0g] and
Peikert Pei09¢ constructed IND-CCA2 secure encryption schemes by employing
the Rosen—Segev constructid®309. (We note that Dowsley, Miler-Quade, and
NascimentoDMQNO9] also constructed an IND-CCA2 secure encryption scheme
from the McEliece encryption scheme based on the assumption on the coding prob-
lems.)

The Rosen—Segev construction is summarized as follows:

Scheme 13.4.5(The Rosen—-Segev ConstructioiR309). Let Trap =
(T.Gen, T.Eval, T.Inv) be one-way functions. L&TS = (O.Gen, O.Sign, O.Ver)
be a one-time secure signature scheme with verification-key sp#@elj$. As-
sume that the trapdoor functiofy : {0,1}" — {0,1}" is one-way. We also as-
sume thatfa(s) = (f(9),..., fa(9) is also one-way. Additionally, a function
h:{0,1}" - {0, 1} is a hardcore function of,.

P.KeyGen(1"): Fori € [v] andb € {0,1}, obtain &,t?) — T.Gen. Output
ek={a”} anddk = ({t?}, eK.

P.Enc(ek msQ: Generatevk, sK) < O.Gen(1"). Generate a random strirsg—
{0, 1}". Computec; « (f (vkl)(S) , f (vkv)(s)) andc, < h(s) @ msg Obtain a

signaturer- < O.Sign(sk (cl, cz)) Output the ciphertextt = (vk, c1, Cp, o).

P.Dec(dk, ct): Verify the signaturer; outputL if O.Ver(vk, (c1,cy)) = 0. Then,
by usingT.Inv, invert f (vkl)(s) and obtains. Confirm the otherfaw(vm(s) by

T.Eval; output_L if not. Then obtain a messagesg= h(s) & c,.
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Showing that the scheme is IND-CCA2 secure is educationally simple as Rosen
and Segev noted®S09. The intuition is that the simulator implants givdp =
(fay, ..., fa) into {fai(\lki)} for its choservk’, and simulates the decryption oracle if

VK # vk

Returning to the lattice-based scheme, the functafs, x) is secure with
respect to the distributioJ (Zg) x ™k 1t is obvious that the new function
ga(s X) = (9a,(S X1),...,0a(S Xk)) is also one-way under the sSLWE assump-
tion, whereA = [A1]...|Ak], X = X1 0... 0 Xk, Sis chosen fronzg uniformly at
random, eaclx; is a sample fromy™. It is also true that the above functign is
pseudorandom under the dLWE assumption.

There are some fliculties for direct applying the Rosen—Segev technigue.
Since we cannot recover (we recoverx’ in the above trapdoor function), this
noise will be exploited by the IND-CCAZ2 adversary. In addition, the simulator in
the IND-CCA2 game have to able to check sophes correctly generated undéx
even if it does not know its trapdoor. To circumvent thiidulties, Peikert defines
the preimage verification algorithm fgp.

PreVer(A, (s, X’), p): Computep « p/q € T™. Accept if|[X||, < a -t and
b = éATs+ x’ € T™and reject otherwise.

Lemma 13.4.6([Pei09¢ Lemma 4.4]) For g > 1/(at) > 2L +/m > 8, the algo-
rithm PreVer and LWETrap satisfies the following conditions:

Completeness:For any s and x drawn from¥ll, and x’ output by the inver-

sion algorithm givenp = ga(s, x) and T, PreVer(A, (s, x’), p) accepts with
overwhelming probability over the choicexf

Unique preimage: For everyp e Zg,‘, there is at most one legal preimage x’)
underga; that is, PreVer(A, (s, x’), p) accepts for at most one value (sf x’).

Findable preimage: For any p, the inversion algorithm, given inpufsand T,
always outputs the unique legal preima@gex’), i.e., the(s, x’) that makes
PreVer accept, if such pair exists.

Assuming the sLWEy, is hard, we can show thaf\(ga(s, X)) ~c¢ (A, p),
wheres « Zg, X« ¥ andp* « Zg,‘.

We here construct KEM rather than public-key encryption. This eliminates use
of the hardcore functions. The following scheme is the obtained KEM applying
the Rosen—Segev construction.

Scheme 13.4.7(Pei-KEM, combinded, [Pei09¢ and [Pei09l). Let OTS =
(0.Gen, 0.Sign, 0.Ver) be a strongly one-time secure signature scheme with
verification-key spacg0, 1}V. Let LWETrap = (L.Gen,L.Eval,L.Inv) as in the
above.

Gen(1"): Fori = 1,...,vandb € {0,1}, generate 2key pairs A, T®)
L.Gen(1") such that||'|~'i(b)|| < L. Generatel « ng'. It outputsek =
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(AP, U) anddk = ((TP);, €.

Encaps(ek): Choose a ke « {0,1}. Next, generate a key paivk sk} «
0.Gen(1"). Generate a random vecter— Zg and generate; « x™ for
i =1,...,vandx, « x'. Then comput@ « g,u)(S Xpi) andv « gu(s x).
Computec <« v+|q'/2] k modq'. Signp andc aso « 0.Sign(sk ({p}, ©)).
Finally, outputct = (vk, {p}, C, o).

Decaps(dk, ct): Check if O.Ver(vk, ({p},c),o) = 1; if not, output L and
halt. Next, inverts from p. Computex/ from s and p. Check if
PreVer(Ai("'“),(s, x), p) = 1 for anyi; if not, output L and halt. Finally,
retrievek from c and outputk.

Combining this KEM and some ind-otcca DEM, we obtain ind-cca2 secure
public-key encryption scheme.

Theorem 13.4.8([Pei09¢). The abovePei-KEM is ind-cca2secure ifOTS is
strongly one-time secure amilWE(q, x) is hard.

The proof is obtained combining the arguments of Peikert, and Rosen and
Segev. We give only the proof sketch here.
Consider the following games;

Gameg: The original game. In the challenge phase, the challenger works as
follows: ko, ki « {0,1)', (vK',sK) « 0.Gen(1"), s «— Z§, Xp;i < x™,
Xy Xl,

o 1 4 — / E 7
o <—aAi(VKk)s+ Xpi» B < |ap] modq’,
Ve §u5+ Xeo 7 — [gv'] modq,
C «V+|q/2]kmodd, o « 0.Sign(sk, {p}, C°).

Game1: We change the timing of the generationuf; A priori to the game,
the challenger obtaingk’, sk’) < O.Gen(1").

Game,: We change the specification of the decryption oracle: the decryption
oracle returns. on the quengct = (vk', ¢, Cp, ).

Games: We modify the decryption oracle: On the quewk(p}, C, o), if vk =
vK' then returnsL as in the previous game. If not, it scarksandvk®™ and finds
an indexj € [t] such thatvk; # vKj. Then, invertp; and obtains. The other
procedure is same to the original. Here, the decryption procedure has no need
to useTfVK).

Game4: We change the key-generation method. iFefv], Ai(vm — Zg™M.

Games: We change the key generation and the generation method for the target
ciphertext. The challenger takes/+ | samples fromAs,. Then, name them
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(A" ) and U, v).

Gameg: We again change the generations. The challenger taked samples
form U(Zg x T).

You can show the distances between each games are negligible. It is obvious
that Gameo andGame; are identical since we only change the timing. It is also
easy to verify thatGame; and Game, are computationally indistinguishable if
OTS is strongly one-time secure. The useRoéVer immediately ensures the sta-
tistical indistinguishability betwee@ame, andGames. In addition, the distance
betweenGamesz and Game, is negligible following from the statistical correct-
ness olL.Gen. Game, andGames are computationally indistinguishable because
dLWE(q, v) is hard. Hence, we have the following inequality,

2 Advind-ceaz(ny < Adv (n) + AdVaiwe(n) + negi(n).

13.5 The Stehd—Steinfeld-Tanaka—Xagawa PKE

Stehk, Steinfeld, Tanaka, and Xagaw#3TX09 proposed an ideal-lattice version

of Peikert’'s scheme. It is very natural to consider the replacerentth a in
LWETrap yields a secure one-way trapdoor function. But this replacement induces
several dfficulties. Before discussions, we describe thWETrap.

Scheme 13.5.{ILWETrap [[SSTX09).

Setup(1"): Given the security parametet, butput 1.

KeyGen(1"): UsingILPSF.TrapGen, obtaina € R;”q andT e R™™ of a short
basis ofM+ (). In the following, T’ denote Rq{T). We suppose thalfl’|| <
L.

Eval(ek= & msg= s): Supposes € Zg. Choosex « ¥ and computep «
(—1] Rot(8)"Ts+ x € T™. Outputgs(s, X) = p= |q - p] modq'.

Inv(dk =T, p): Givenp = ga(s, X) € Zg), let p' « p/q € T™, computey «
T'-T| 7T mod 1, and computes from y by solvingy = £ Rot(®)'s e T™.
(It can also outpux’ « p’ — cl‘ Rot(&)"se TM)

The problems are twofold. The one is dfi@ency issue and the other is that
the function is not pseudorandom if we assumeftsBWE assumption.

Recovering the d#liciency: The transpose operation generally Kills tiigogency
advantage of the ideal-lattice version, since;R)t may be not suited for the
computation. Hence, we ne@i{n?) steps to multiply Ra(a)" ands.

Here, we set = x" + 1 and recall the reciprocal polynomial@ection 10.lY

rec@ = a(1/x) in R.
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Then, we have that
Rot(a)" - s= Rot(rec@)) - s=rec@) ®s.

The operation rec takes only a small cost and we can comput@Rawith O(n)
steps as in the before.

On pseudorandomness: Since Rot(a)" is very structured, we cannot show the
pseudorandomness d, (ec@) ® s + X), wheres « Ry q andx « ¥} opposite
to the success of the reduction from dLWE to sSLWE. To circumvent this, &tehl
et al. [SSTX09 used the hardcore function extract the pseudorandomness. They
employed the Goldreich—Levin hardcore functions with Toeplitz matriGaS38,
ACO02, [HMS04, KY06| [KX09] which extract constant bits. In their paper, they
assumed that the super-polynomial hardness of SLWE and ektramn) bits.

We left the two open problems; The one &a@ent hardcore functions with
tighter reductions td-sLWE problem. The other is showirfgdLWE is hard on
the average from the lattice assumptions.
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14

|dentity-Based Encryption

Organization:  We give the brief introduction i€ection 14.1[Section 14.®jives
the definitions of schemes and security notid&sciion 14.3eviews the Gentry—
Peikert—Vaikuntanathan identity-based encryptiorSéction 14.Uve review the
construction of hierarchical identity-based encryption schemes.

14.1 Introduction

After proposal of the concept of identity-based cryptosystems by Sh&imadh,
many researchers have made tferes on construction of identity-based encryp-
tion (IBE) schemes.

This was long-standing open problem in cryptography until 2001. The concrete
IBE schemes are constructed by Sakai, Ogishi, and Kasa®@i€(d]], Boneh and
Franklin BEOJ, and Cocks|Coc0]]; the first and second ones are based on the
pairing assumptions and the last one is based on the quadratic residue assumption.

Roughly speaking, these schemes are obtained by combining the signature
schemes and the encryption schemes; Het {0, 1}* — K, be the random or-
acle, whereK,, is an encryption-key space of the underlying encryption scheme.
The master makes a key pauk(sk « Sig.KeyGen(1") and publishesk. The
user encryption key isky = H(id) and the user decryption key ikg = oig «
Sig.Sign(sk id). Such correspondence yields an IBE scheme in the random oracle
model.

Turning our eyes on lattice-based IBEs. The first proposal was done by Gentry,
Peikert, and Vaikuntanatha®PVO0§, which is obtained by combininGPV-FDH
with Dual. After their construction, Agrawal and BoyeABQ9], Cash, Hofheinz,
and Kiltz [CHKQY], and PeikertlPei09f) proposed IBE schemes secure in the stan-
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dard models. Cash et al. and Peikert also gave HIBEs on which the techniques are
essentially same again. In addition, Cash et al. discussed the use of admissible hash
functions to enhance the security to be fully secure and gave a concise proof (see
the original papelCHKQ9)).

We note that there is another IBE scheme by Boneh and B@869], how-
ever, we cannot confirm their security.

14.2 Definitions

14.2.1 Model of Identity-based Encryption Schemes
An IBE schemdBE is a quadruplet of algorithm$étup, Ext, Enc, Dec).

Setup(1"): A setup algorithm, given the security paramet®r dutputs public
parameterparamand a master secret kaysk

Ext(mskid): An extraction algorithm, givemskand an identityid, outputs a
decryption key of the useliky.

Enc(paramid, msg: An encryption algorithm, giveparam id, and a message
msg outputs a ciphertext.

Dec(dkig, ct): A decryption algorithm, givedky andct, returns a messagesg

14.2.2 Model of Hierarchical Identity-based Encryption Schemes

A HIBE schemeHIBE is a tuple of algorithmsSetup, Ext, Delg, Enc, Dec). id =
(idg,...,id)). id}; = (idy, ..., id;) thei-th prefix ofid.

Setup(1"): A setup algorithm, given the security paramet®r dutputs public
parameterparamand a master secret kaysk

Ext(mskid): An extraction algorithm, givemskand an identityid of length at
mostd, outputs a decryption key of the usig.

Delg(dkig;,_,,id): A secret-key delegation algorithm, given a decryption key
dkiq, , for a parentid|i_1 and an identityid of length at most, outputs a
decryption key of the usetky for the useid.

Enc(paramid, msg: An encryption algorithm, givemparam id of length at
mostd, and a messagasg outputs a ciphertexdt.

Dec(dkig, ct): A decryption algorithm, givedky andct, returns a messagesg

14.2.3 Security Notions

Roughly speaking, the security denotes the adversary cannot distinguish two ci-
phertexts of its chosen messages even if it can access to the extraction oracle. We
note that there are two modes of attacks. The one is a selective ID mode, where
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the adversary must commit the target identity at the start of the game. The other is
a full ID mode, where the adversary can choose the target identity at the challenge
phase. Obviously, ifBE is goal-fID-atk-secure it is also goal-sID-atk-secure.

We start to recall the weaker security notion ind-sID-atk security. Consider the

experimenExpji 2 2X(n) between the challengerand the adversaryi.

H ind-sID-atl .
Experiment Expjad$22%(n):

Initiating Phase: The adversary commits an identity” to the challenger,
which is the target identity of the adversary.

Setup Phase:The challenge€ takes the security parametérdnd obtains
(param msk « Setup(1"). It givesparamto the adversaryA.

Learning Phase 1: The adversary can issue queries to the orBgleacr.
Additionally, A can issue queries to the ora€lec if atk € {ccal cca3.

e The oracleExtract receives inputd. If id = id*, the challenger out-
puts 0 and halts. Otherwise, the oracle respathgis— Ext(msk id).

e The oracleDkc receives inputst and returngnsg<« Dec(dk, ct).

Challenge Phase:The adversaryA outputs two plaintextensg andmsg.
The challenger flips a coib « {0,1}, sets the target ciphertext to be
ct* « Enc(paramid®, msg,), and sendst" to the adversary.

Learning Phase 2: Again, the adversary can issue queries to the oracle
Extract. If atk = cca2, it also can issue queries to the orénte.

e The oracleExtract receives inputd. If id = id*, the challenger out-
puts 0 and halts. Otherwise, the oracle respatigs— Ext(mskid).

e The oracleDec receives input#d andct. If id = id* andct = ct*, the
challenger outputs 0 and halts. Otherwise, the oracle remsgs—
Dec(dkg, ct).

Guessing PhaseFinally, A outputs a guesb’ € {0,1}. If b* = b the
challenger outputs 1, otherwise 0.

Definition 14.2.1. Let IBE = (Setup, Extract, Enc, Dec) be an identity-based en-
cryption scheme# an adversary, andla security parameter. We define the advan-
tage ofA as

. . 1
A0 — [prlExps ey - 1] - 1
We say thatlBE is ind-sID-atk secure iAdvind-siP-ak.) js negligible for every

el IBE, A
polynomial-time adversar.

We next define the full ID security. In this mode, the adversary can determine
atarget ID in the challenge phase.

Consider the experimeBxpj3e 22*(n) between the challengérand the ad-
versaryA.
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; ind-fID-atk ) -
Experiment Expgg ' **(n):

Setup Phase:The challenge€ takes the security parametérdnd obtains
(param msk « Setup(1"). It givesparamto the adversaryA.

Learning Phase 1: The adversary can issue queries to the orggi&acr.
Additionally, A can issue queries to the ora@ec if atk € {ccal ccaz.

e The oracleExtract receives inputd. The oracle respondiky «
Ext(mskid).
e The oracleDec receives inputst and returnsnsg« Dec(dk, ct).
Challenge Phase:The adversaryA outputs two plaintextaisg andmsg,
and a target identityd*. If id* is queried to the oracl&xtracT in the
learning phase 1, the challengeroutputs 0 and halts. Otherwise, the

challenger flips a coib < {0, 1}, sets the target ciphertext to b& «
Enc(paramid*, msg,), and sendst" to the adversary.

Learning Phase 2: Again, the adversary can issue queries to the oracle
ExtracT. If atk = cca2, it can issue queries to the oraDie.

e The oracleExtract receives inpuid. If id = id*, the challenger out-
puts 0 and halts. Otherwise, the oracle respatgs— Ext(mskid).

e The oracleDec receives inputgd andct. If id = id* andct = ct*, the
challenger outputs 0 and halts. Otherwise, the oracle retnsgs—
Dec(dkg, ct).

Guessing PhaseFinally, A outputs a guest’ € {0,1}. If b" = b the
challenger outputs 1, otherwise 0.

Definition 14.2.2. Let IBE = (Setup, Extract, Enc, Dec) be an identity-based en-
cryption scheme#A an adversary, anda security parameter. We define the advan-
tage ofA as

. . 1
AdviatP-at(n) = ‘Pr[Exp‘,ngf'ﬂD Mm=1]-3|.

We say thatiBE is ind-flD-atk secure ifAdvii"22%() is negligible for every
polynomial-time adversarg.

To extend these notation to HIBE, we add the new or@eiecare. We omit
the details of the definitions.

14.3 The Gentry—Peikert—Vaikuntanathan Identity-
Based Encryption Scheme
This is the first identity-based encryption scheme based on lattice problems. In-

tuitively, the public parameter and the master key corresponds the verification key
and the secret key of the GPV signature scheme. The decryption key of the iden-
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tity id is the signaturer on the messagd. Notice that the decryption key @fual
corresponds to-.

14.3.1 Description

Scheme 14.3.1GPV-IBE [GPV0q). We modelH : {0,1}* — Z3*! as the random
oracle.

Setup(n): On input the security parameter invoke the trapdoor algorithm
LPSF.TrapGen(1") in[Chapter I[and obtainA € Zg™ and its basig € Z™™
such thaf|T|| < L. Outputparam= A andmsk=T.

Extract(param= A,id): On input the identityid, compute {lig1,...,Ud ] =
Ug <« H(id). Then, invoke the GPV sampling algorithmy; «
LPSF.SamplePre(A, T, S, Ujg,i). Outputdky = Eig = [€d.1,- .., €d,] as user's
decryption key.

Enc(id, msg= b): First generatdJiy « H(id). Then, generats « Zj and
X <« x™ Computep = ATs+ x ¢ Zg. For messagé e 7\, compute
w = encode(b) € Z{T Then, the ciphertextisp(c = UTs+ w).

Dec(dky = Eig, ct = (p, ¢)) . Computed = ¢ - EJ, p € Z,. Output the plaintext
b € Z}, by computingdecode(d).

Theorem 14.3.2(Correctness/GPV09). Lety = ¥,, s > L - w(+flogn), q >
5(m+ 1)psandl/a > psVm+ 1- w(+/logn). Then the scheme is correct.

The proof is obtained by an analogy of ondl@teorem 12,912

14.3.2 Security Proof

The security proof is obtained by combination of one3laéorem 12.9]andThe}l
lorem 11.3.BHence, we omit the proof.

Theorem 14.3.3(Security, [GPV0]). Let y = ¥,, m > 2(n + )logg and
s = w(+/logm). The above IBE is IND-fID-CPA secure under ttheWE(q, y)
assumption.

14.4 The Cash—Hofheinz—Kiltz Hierarchical Identity-
Based Encryption Scheme

Very recently three papers, Agrawal and Boy&B09], Cash, Hofheinz, and
Kiltz [[CHKQ9], and PeikertlPei09l), proposed identity-based encryption schemes
without the random oracles. Here, we omit description of the Agrawal-Boyen IBE
since it is included by the Cash—Hofheinz—Kiltz HIBE in the standard model by
setting the deptd = 1.
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Ideas for identity-based encryption: We first give the idea of the IBEs, which
often appears in cryptography. Recall the Peikert KEM. In the scheme, the public
key forvk € {0,1} is Ay = [A(1Vk1)| ... |AV)] We replacevk with id € {0, 1}V and

the encryption is done d3ual.

Let ({Ai(b)},u) be the public parameter (master’s public key). The master has
corresponding trapdoof3 i(b)}. The extraction is done by as follows: (1) generate
Aqg = [Agdl)l ...|Al] and generatdig by “extending control” ifSection 10.8
and (2) obtairgq € ZM such thatAigeq = u (modq). The user secret key &.
Then, the encryption and decryption procedures are the same to the Doal of

To show the security in the standard model, the simulator must extract for any
id # id". Thus, the simulator, giveld" from the adversary, implant the challenge
into Ai('di*) and generate trapdoo’fél_'di*). If id # id*, there is some indek € [A]
such thatd; # id]-‘. Hence, using the trapdoﬁf'dj), the simulator can generadg.

The extraction is simplified by addingy, into the public parameter. The master
generatesAy, Tp) and generates random matrio@@ fori € [Aq] andb € {0, 1}.
Then, the use public key is defined Ag = [A0|A2d1)| ... |Agd”)].

To expand the identity spacg®,1}! to {0, 1}*, we can use the collision-
resistant hash functio : {0,1})* — {0,1}*. Lett « H(id) and redefine
Aig = [Ad ATV |AT].

Ideas for hierarchical identity-based encryption: In order to delegate the
power of the extraction, we can use “randomized contro[Settion 10.8 The
maximal depth is set td. Consideiid = (id1, ..., idy) € ({0, 1}*)X for k € [d].

The master generate%, € Zg ™ andCi(’jb) € ZgVfori e [d], j € [4], and
b € {0,1} and choosed; : {0, 1}* — {0, 1}* for i € [d].

The user encryption key is defined as follows: kr let us defineA; g, =
[C®)...1c)), where ¢1.....t) = Hi(id). Forid = (idy.....idy), Ag =
[AolAvidy|- - - [Akidi]-

This does not change the spirit of the user encryption key. The split enables us
to delegate the basis. For aiay= (id1, ..., idy), defineidlk — 1 = (idq, ..., idk_1),
the parent ofd. Suppose that the pareidik — 1 has a basi3iqk-1 with quality
L(k-1) of a latticeAg (Aigik-1)- Cash et allCHKO9] and PeikertPei09t) proposed
“delegation of the basis” (or “randomized control”) which allodk — 1 to gener-
ate a basigq of a IatticeAg(Aid); Compute a basi®’ of the latticeAjg = Aé(Aid)
and take samples fromy, sk-1), wheres(k—1) will be defined later. The obtained
basis has a qualit(k) = s(k — 1) - vYm(k — 1), wherem(k — 1) = m+ (k — 1)av.

We have introduced the parametenk), L(k), s(k) fork = 0,...,d. They are
defined inductively as follows:

mo=m, Lo=1L, S0 = L - w(+/logn),
me=m+Kay, Lg= 1 Vmer- o(ylogmes),  sc= Lk w(+/logn).
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14.4. THE CASH-HOFHEINZ—KILTZ HIERARCHICAL IDENTITY-BASED
ENCRYPTION SCHEME

For simplicity, we letg(n) = w(+/logn) and obtain

mg = m+ dav,
Lg<L-(mg)¥?- g wllog??my),
sa < L-(mg)¥2- g™ - w(log®? my).

14.4.1 Descriptions

Cash et al. defined = m and use the Alwen—Peikert constructions 1 and 2 (see
Section 10.3]andSection 10.3]8

Scheme 14.4.XCHK-HIBE [[CHKOQ9]). The maximal depth isl. We useH,, =
{H : {0, 1}* — {0, 1}*} a family of hash functions.

Setup(n): On input the security parameter invoke the trapdoor algorithm
LPSF.TrapGen(1") in [Chapter Ipand obtainAg € g™ and its basisT €
Z™m such that|T|| < L. Next, generate random matric@%t}) « zZg™ for
i €[d], j € [1] andb € {0,1}. Additionally, choosdJ = [u1,...,u] « ZQX'
andH; « Hy,. Outputparam= (Ao, U, {Cfﬁ)},{Hi}) andmsk=T.

Ext(param= A, msk= T,id): For an identityid = (id4,...,idy), defineAjq =
[AolAvia] - 1Akia] € Zg D™, where Ajjg,  [CP1...1IcW] e zpxim
for (t1,...,t)) « Hi(idj)) € {0,1}*. Using a short basig of AqL(AO),
it samples a basigiqy of Aj(Aid) and Ey = [e1,...,8], whereg «
LPSF.SamplePre(Aig, Tig, S(K), uj). Outputdkig = (Tig, Eid).

Delg(param= Ag, uskdk-1 = (Tidk-1, Eidjk-1),id): It will output usky =
(Tia, €q). DefineAjg as in the above. Using a short bakigik-1 of Ag (Aidk-1),
it construct a short basig’ of the IatticeAa(Aid). Then, it samples a basig
of Aj(Aid) andEjg = [e1,...,8] whereg « SamplePre(Aig, T’, S(K), U;).
Outputdky = (Tig, Eig).

Enc(paramid, msg= b e Z'p): First generatéAig as in the above. Then, gen-
erates — Z§ andx « x*™ Computep = Als+ x € Zg™ Compute
c= ULS+ X’ + encode(b), wherex’ « x'. Then, the ciphertext iy c).

Dec(usky = (Tig, Eiq),ct=(p,c)) . Computed = ¢ — ELp € Z{q. Output the
plaintextb € Zj, by computingdecode(d).

They define admissible hash functions as a variant of the definition
from [BBO4]. For the details, see the original papeBBD4, [CHK09]. Cash et
al. showed the following security results.

Theorem 14.4.2(JCHKOY). Letq > 5-sg-(M+ 1), y = Vo, 1/ > s -
V@d + I)m+T - w(+/logn). If H, is collision resistant, then the above HIBE is
ind-sID-cpasecure. IfH, is a family of admissible hash functions, then the above
HIBE isind-fID-cpasecure.
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14.5. PEIKERT'S “BONSAI" KEY-ENCAPSULATION MECHANISM

14.4.2 Another Scheme

Cash et al.[CHKQ9] also proposed the HIBE secure in the random oracle model.
This scheme can be considered as the direct generalizati®R\WHIBE.

Scheme 14.4.3CHK-HIBEInROM [[CHKQ9]). We modelG : {0,1}* — Zg and
H:{01*— ngm as the random oracles.

Setup(n): On input the security parameter invoke the trapdoor algorithm
LPSF.TrapGen(1") in [Chapter IPand obtainAg € Zg™ and its basisT €
Z™M such that|T|| < L. Outputparam= Ap andmsk= T.

Ext(param= Ao, msk= T,id): Define Aqg = [AolAl...|A] e zZgd+dm,
where Aj < H(id,i) € Zg™ andug < G(id) € Zg Using a
short basisT of Aql(Ao), it samples a basiiy of Aé(Aid) and gq «
LPSF.SamplePre(Aidk-1, Tidjk-1. S(K), Uig). Outputdkq = (Tid, €d)-

Delg(param= Ag, uskgk-1 = (Tidik-1, Gdjk-1), id): uskq = (Tig, &q). Define Aig
anduig as in the above. Using a short baSjgk-1 of AqL(AiOHk_l), it samples
a basisTiq of Aé(Aid) andeqy < LPSF.SamplePre(Aidik-1, Tidk-1, S(K), Uid).
Outputdkig = (Tig, €d)-

Enc(paramid, msg= w € Zp): First generateAjgk-1 as in the above. Then,
generates «— Zj andx « x*™ Computep = Alj1S+ X € Z&™. Com-
putec = uLs+ X'+ encode(w), wherex « y. Then, the ciphertext igc).

Dec(usky = (Tig. &), ct = (p.¢)) . Computed = ¢ — el,p € Zq. Output the
plaintextw € Z, by computingdecode(d).

14.5 Peikert's “Bonsai” Key-Encapsulation Mechanism

Peikert also proposed hierarchical identity-based encryption scheme. This scheme
can be considered as optimized variant of the CHK-HIBE.

First, if each componerit; of id is restricted to1-bit, we have no need to
introduce the hash functioH; (because the identity map is collision resistant).
Second, usingWE-KEM = (K.Gen, K.Encaps, K.Decaps) (Section 13}, eq is
eliminated since the basigy sufices to decrypt. Third, he and Alwen improved
the trapdoor generation (the third constructiofseciion 10,34

14.5.1 Descriptions

Scheme 14.5.1Bonsai-HIBKEM [Pei09l)). Suppose that the maximal deptidis
Letm=nmy + my.

Setup(n): On input the security parameter invoke the trapdoor algorithm

LPSF.TrapGen(1") in [Chapter IPand obtainAg € Zg™ and its basisT €
Z™M sych that|T|| < L. Next, generate random matricég? 2™ for
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i € [d], j € [1] andb € {0,1}. Additionally, chooseJ = [uy,...,u] « Z§*.
Outputparam= (Ap, U, {Ci(,t})}’ {H;}) andmsk=T.

Ext(param= Ag, msk= T,id): For an identityid = (idy, ..., idy), defineAjg =
[AolAvia,l .- |Akia] where Ajg, — [C!...1ICH] e Z§“™ for t = id.
Using a short basi¥ of Az(Ao), it samples a basigig of Ag(Aig). Output
dkg = Tig.

Delg(param= Ag, uskqk-1 = Tigk-1,1d): Define Ajq as in the above. Using a
short basisTigk-1 of Aé(Aidu(_l), it construct a short basis’ of the lattice
Aa(Aid). Then, it samples a baslg of Aé(Aid). Outputdky = Tig.

Enc(paramid): It outputs k, o) <« K.Encaps(Aig).

Dec(Tig,0): It outputsk <« K.Decaps(Tig, o).

Remark 14.5.2.Using the miniature “Bonsai” techniques, we can obtain the ideal-

lattice-based IBE and HIBE as i®5TX09.
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15

Proxy Re-Encryption

Proxy re-encryption enables a proxy to convert a ciphertext for some user to a ci-
phertext for another user, but a proxy cannot learn information of messages. All of
the proxy re-encryption and identity-based proxy re-encryption schemes are based
on the number-theoretic assumptions. This paper proposed proxy re-encryption
schemes based on the learning with errors problem. They are first schemes based
on combinatorial problems.

Organization: [Section 15.Mgives the brief introduction of proxy re-encryption,
gives the idea from the EIGamal-based proxy re-encryption scH8gwion 15.P
defines model and the security notions on proxy re-encryg8eugtion 15.3tudies

the Xagawa—Tanaka proxy re-encryption scheme, which adds feature to Regev’s
encryption scheméection 15.4lso studies the variant of the above scheme.

15.1 Introduction

Suppose that Alice wants to forward a received encrypted e-mail to Bob in the
public channel. She decrypts it by her secret key, encrypts the message with Bob’s
public key, and sends it to him. However, decryption and encryption are costly for
her mobile phone in general. Therefore, she wants a mail server to forward her
mail to Bob automatically. In this case, she does not trust the server, hence, she
does not want to give her secret key to the server. The one of solutions is proxy
re-encryption[BBS9§.

In a proxy re-encryption (PRE) scheme, the server is given a re-encryption key
rka..g between Alice and Bob. The server, given a ciphertéxtfor Alice, can
convert it to a ciphertexttg for Bob by using the re-encryption ke¥a..g and
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15.1. INTRODUCTION

without decryptingcta. In addition, proxy re-encryption ensures that even if the
server knowska.,g, it cannot learn the messageatf.

The study of proxy re-encryption is initiated by Blaze, Bleumer, and
Strauss [BBS9§. They formalize a proxy re-encryption and gave an exam-
ple based on the ElGamal encryption scheme. There are several proxy re-
encryption scheme8BS98 AFGHOE,ICHO7,IL\VV08, DWLC08,/ABH09, MNT10]
and identity-based proxy re-encryption schenatD7 [GAQ07,ICTO7] in the liter-
ature. However, their underlying problems are the decision@ikeEtHellman prob-
lem or its variants.

In this paper, we propose proxy re-encryption schemes based on other prob-
lems, the learning with errors and lattice problems. Our constructions are obtained
by extending Regev’s encryption scheriref09.

Ideas from the ElGamal-based PRE: We note that some lattice-based crypto-
systems have similar structure on the DDH-based cryptosystems while inherent
noises of lattice-based cryptosystems disturb the structure.

Consider the EIGamal encryption scheme dver (g) with order a large prime
g. The key pairisx, y = g*) for randomly chosem. The ciphertext ofv € G under
the encryption key is (g, w - y*) for randomly chosel. Let (xa,ya = g*) and
(xs, Y8 = g*®) denote Alice’s and Bob's key pair, respectively. Assume that the
proxy has the re-encryption key.,s = Xa — Xg and has the ciphertexty, c;) to
be converted. Then, the conversion is done by

(ch.¢5) = (C1,C2- €] A"
= (g w- g% - o) = (g w- y).

It can be shown that this proxy re-encryption scheme is based on the hardness of
the DDH problenf¥

We here recall Regev’s encryption scheme. The key pair is computed by
(s(A.p = sTA+x), wheres € Zj, A € Zg*™, x € Zz*™ and the magnitudes
of the elements ok are relatively smaller thag/4m, say thel;-norm of x is at
mostq/4. The encryption of the messagee {0, 1} under the encryption key
(A, p)is (u,v) = (Ae, pe+w|q/2]), wheree « {0,1}™.

The decryption procedure is as follows: (1) compaite v—s'u and (2) output
0 if the absolute value af is at mosty/4 and output 1 otherwise.

Let (Sa. (Aa, Pa = SRAa+Xa)), and &g, (Ag. ps = SpAs + Xg)) denote Alice’s
and Bob’s key pair, respectively. Let..z = sa — Sg. Then, the conversion from
(u,va) to (u, vg) is done by (,Vvg) = (u,va — rx_gU), which is similar to that of
the ElGamal-based proxy re-encryption scheme. The decryption by Bob works
correctly since

ds = Vg — S5U = VA — (Sa — Sg) " U — SKU = VA — SpU = da.

1In the BBS scheméBBS9¢, the re-encryption key isa.z = Xa/Xs. The ciphertext ofv is
(c1,¢2) = (W- g, yX). The conversion is done byj( c,) = (c1,¢y/™®) = (W g~ yK).
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The proof strategy for security is also similar to that of the ElIGamal-based
proxy re-encryption scheme.

The leftover hash lemma often appears in the context of lattice-based cryptog-
raphy. We summarize the arguments which appeared in many papers on lattice-
based cryptography. Se@¢g09 for the proof.

Lemma 15.1.1(The uniformity lemma for lattice-based hash functior@pnsider
H = (ha : (O™ — ZI" | A € Z{""™), whereha(e) = Ae. LetH be the
uniform distribution overH, and X andU random variables distributed uniformly
over{0, 1}™ andZS*' , respectively. Applying the variant of the leftover hash lemma,
we have

PIA(H(X),U) > 2—%(m—(n+l)|ogq)] < 2—%(m—(n+|)logq)

H 9 _— - .

In particular, if m= ((1 + 6)n + |) log g, then we have that

PIAMH(X).U) 2 gV < g%

15.2 Definitions

In this paper, we considéidirectionalandmulti-hopproxy re-encryption. A PRE
scheme is called bidirectional, if a proxy has a re-encryptionrkgy;, it can
convert a ciphertext for the uskto a ciphertext for the usgg vice versa. A PRE
scheme is said to be multi-hop, a proxy can re-encrypt a ciphertext for theé user
into a ciphertext for the usgrand it can re-encrypt that into one for the ukand

SO on.

15.2.1 Model of Proxy Re-Encryption Schemes
A PRE schem@®RE is a sextuplet of algorithms:

Setup(1"): The setup algorithm, given the security paramateutputs param-
etersparam

Reg(parami): The registration algorithm, given the parametpasamand a
user identityi, outputs the pair of an encryption key and a decryption key

(ek, dk).

ReKeyGen(dk;, dkj): The re-encryption key generation algorithm, given two
decryption keyslk anddk;, outputs a re-encryption ke ;.

Enc(param ek, msg: The encryption algorithm, given the parametpasam
the encryption keyk of the useli, and a messagmsg outputs a ciphertext
ct;.

ReEnc(rki j, ct): The re-encryption algorithm, given the re-encryption Keay
between the usersandj, and a ciphertextt; for the uset, it outputs a cipher-
textct; for the user;.
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Dec(dk, ct): The decryption algorithm, given the decryption ladlyand the ci-
phertextct, outputs a plaintexinsg

Our definition of correctness is slightly weaker than the standard@H@T].
We say a PRE schemRE is correct if an underlying public-key encryption
schemePKE = (Setup, Reg, Enc, Dec) is correct. Formally, it holds that if for
any validmsg there exists some negligible functiaagl(n) such that for any

param« Setup(1");
(ek, dk) < Reg(parami);
ct « Enc(param ek, msg;
msg« Dec(dk;, ct);

Pr{msg# msg: < negl(n).

Additionally, we say a PRE schen®RE is multi-hop correct if for any valignsg
and for any integek > 1, one can correctly decrypt the ciphertexhtfgconverted
k times intomsg that is,

param« Setup(1");
(ek, dk) < Reg(parami);
rkicis1 < ReKeyGen(dk, dk.1); | _ (@)
cty « Enc(param ek;, msQ; - ’
Ctir1 «— ReEnc(rkioi+1, Cti);
mSg« Dec(dk, Cty);

Pr{msg# msg:

wherei runs from 1 tok.

15.2.2 Security Notions

We describe the formal definition of CPA security of proxy re-encryption, denoted
by IND-PRE-CPA. Consider the following experimdﬁng]ng;{Hpa(n) between
the challenge€ and the adversaryi.

Setup Phase:The challenger takes a security paramatdt setsHU, CU « 0,
runs the algorithnsetup with 1", and obtains parameteparam whereHU
andCU denote the sets of honest users and corrupted users, respectively. It
givesA the parametergaram

Challenge Phase:ln this phase, the adversary issues queries to the following
oracles in any order and many times except to the constraint in the oracle
CHALLENGE.

e The oracldnir receives an indek If i € HU UCU then it returnsL. Oth-
erwise, it obtainsdk, dk) <« Reg(parami), addsi to HU, and provides
A with ek.

e The oracleCorr receives an indek If i € HU U CU then it returnsL.
Otherwise, it generategk, dk) < Reg(paramr;), addsi to CU, and
providesA with (ek, dk) andr;.
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e The oracleReKey receives two indiceg j € HU U CU. Ifi,j € HU or
i,] € CU returnsrki.,j « ReKeyGen(dk;,dk;). Otherwise, the oracle
returns..

e The oracleReEnc receives two indices j € HU UCU and a ciphertextt.
Ifi,j e HU ori, j € CU, then it obtainsk;.,; < ReKey(dk;, dk;), obtains
ct « ReEnc(param rkic,j, ct), and providesA with the new ciphertext
ct. Otherwise, the oracle returns

e The oracleCuaLLeEnGe can be queried only once. This oracle receives
two plaintextsmsg, msg and a target usar. If i* is not in HU then
it provides_L with the challenger an@ outputs 0 and halts. Otherwise,
the oracle flips a coifb € {0, 1}, sets the target ciphertext to b€ «
Enc(ek-, msg), and sendst* to the adversary anllto the challenger.

Guessing PhaseFinally, A outputs a gueds € {0, 1}. If b’ = b, the challenger
outputs 1, otherwise 0.

Definition 15.2.1 (IND-PRE-CPA security) Let PRE be a PRE schemeA an
adversary, and a security parameter. We define the advantagd ab

AdvePrecP(p) = |2 Pr{Explazie Pn) = 1] - 1| .

We say thaPRE is IND-PRE-CPA secure iAdvrgEf;&CPa(-) is negligible for ev-
ery polynomial-time adversari.

Since we only consider IND-PRE-CPA security, we prohibit the adversary to
re-encrypt ciphertexts from an honest user to a corrupted user. This is because that
this access can simulates a decryption oracle of the honest user.

15.3 The Xagawa—Tanaka Proxy Re-Encryption Scheme

We employ the variant by Peikert, Vaikuntanathan, and WatBMWO0§ of
Regev’s public-key encryption schentedg09. The main algorithms are the same

as those in the PVW scheme. We add to it a re-encryption key generation algorithm
and a re-encryption algorithm appeared in Section 1.

15.3.1 Description

Our PRE schemBWEPRE is defined as follows:

Setup(1™): Given a security parametar it outputsL asparam

Reg(L,i): It generatesAi « Zg™, § « ng', andX; « y”™ and computes
Pi=S A +Xije Z'qu. It outputsek = (A;, P;) anddk = S.

ReKeyGen(dk = S, dkj = S)): It outputsRi.j = S - Sj € Z§¥.

207



15.3. THE XAGAWA-TANAKA PROXY RE-ENCRYPTION SCHEME

Enc(ek= (A, P),w): The message spac@lg. It, givenw, computeg = t(w) €
Z{q, wheret(w) = |wg/p] € Zq and chooses a vecter « {0, 1}™ c Zg"
uniformly at random. It outputs a paiu,(v) = (Ae, Pe+t) € Zg X Z{] as a
ciphertext.

ReEnc(rkij = Rioj, (U,Vi)): It computesyj = v; — RiTHju and outputsy, v;).

Dec(dk = S, (u,V)): It computesd = v—STu € Z'q and outputs the plaintext
w e Z}, such thatd — t(v) € Z is closest td.

We addReKeyGen andReEnc to the variant of Regev’s encryption scheme by
Peikert, Vaikuntanathan, and WatelB3/WO0§. The parameters setting for correct-
ness appeared iiPVWO{.

Theorem 15.3.1(CorrectnessBVWO{). Lety = ¥,. Letg > 4pm leta <
1/(p+v/m-g(n)) for anyg(n) = w(+/logn). Then, the above scheme is correct.

The multi-hop correctness is easily derived by the correctness.

Theorem 15.3.2Multi-hop correctness)Letq, a, andg be as in the above. Then,
the above scheme is multi-hop correct.

Proof. Consider the users 1 .,k. Suppose thatx v;) is the valid ciphertext un-
der the encryption keyAji, P1) of the user 1 and the re-encryption procedure is
performed from 1 tk through 2...,k — 1. By the re-encryption procedures, we
have that

k-1 k-1
We=vi— ) RLu=vi- Y (S-S u=vi- (S-S0,
i=1 i=1

whereS denotes the decryption key of the usetn the decryption procedure by
the usek, di is computed as follows:

dk=Vk—Sfu=v1 - (S - S)'u—-Slu=v; - Sfu.

So, we have thatk = di. Therefore, the multi-hop correctness follows from
[Theorem 15.3]traightforwardly. O

15.3.2 Security Proofs

The security of the scheme is based on the dLWE assumption.

Theorem 15.3.3(Security) Letm > ((1 + 6)n + I)logq for 6 > 0. The above
scheme is IND-PRE-CPA securalfWE(q, ) is hard on average.

Proof. It follows by combining the claims below. m|

Sequence of games: We define the sequence of the games and bound the distance
between the games.
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Gamep: The original IND-PRE-CPA game. First, the challenger feeds the
adversary. The challenger simulates the oracles in the challenge phase. If the
oracleCuaLLENGE receivesi(, wp, W), it flips a coinb € {0, 1} and returns the
target ciphertextu(*, v*) = (Aj-€*, Pj-e* + t(wp)), wheree* « {0, 1}™. Finally,
the adversary outputs a guass If b = b’, then the challenger outputs 1,
otherwise 0.

Game;: We modify the above game, by changing the generation methods of
keys. At the beginning of the challenge phase, the challenger first generates
re-encryption keyRy.,j « ng' for | = 2,...,Q. The other re-encryption
key Rioj is computed byRi,j = Rioi — Rii. Next it chooses; « ZX,

A1 — ZP™, and X1 « "™, and computed; = ST A; + Xy. If Iniris

called Wlth an input, the challenger chooseg « Zg*™, andX; — Y™ and
computesP; = ST A - RLIA, + X;. If ReKey is called withi, j € HU, then it
returnsR;.,j. If REENC is called withi, j, (u, ), then it uses the re-encryption
key Ri. | to re-encrypt the ciphertext. The other conditions are the same as in
the original gameGamey.

Gamey: We replace the generation method of keys. The challenger queries to
the oracleAs, and obtainsQmsamples A, P) € Z§*?™ x g™, Then, it
chops into @, P.) € Z“X’" X Z'Xm fori=1,...,Q. 1t sets A4, Pl) = (Al, Pl)
and Ai, P) = (A, P. - RT A.) The other condltlons are the same as in the
previous gameGamej.

Games: We replace the oraclas, with U(Zg x 7! q)- Hence, the challenger ob-
tainsQmsamples A, P) from U(Zg X7\ q) at f|rst Now,P is chosen uniformly
at random.

Let S; denote the event that the adversary wins, .= b in the game

Game;. We denote byAdva?,Eﬁ,rFfEcjp{a(n) the advantage of the adversafyin the

IND- l?jRE -CPA game with the securlty parameterBy definition, we have that
Adv'L”WEl;fF‘jEC;a(n) = |2 Pr[So] - 1| = | Pr[So] — Pr[Si]l.

Claim 15.3.4. Gameg and Game; are identical.

Proof. Recall thatR,; = § - S; by the definition. Hence, we have tha{.j =
Rioj — Rioi In Gameg. This calculation corresponds to the computatiofRaf;
in Game;.
Additionally, in Game; we haveS = S; — Ry.,j imaginary, since?; = (S; —
Rioi)T A + Xi. Therefore, two games are identical.
|

Claim 15.3.5. Game; andGame; are identical.

Proof. In Game4, we have thaP; = S A+ X - R oi AN
In Game», we have thaP; = P. R oiA Slnce the samples frobg g is
(A P=STA+ X), we conclude that two games are identical. |
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Claim 15.3.6. Game, and Gamez are computationally indistinguishable if
dLWE(q, x) is hard on average.

Proof. Notice that in both games, the challenger does not know the secret keys of
the honest users. Hence, if the adversérgcts diferently inGame, andGames,

one can distinguisihs, from U(Zg x Z'q) with Qmsamples. This concludes the
proof. m|

Claim 15.3.7. In Games, no adversary can obtain the informatitrif m > ((1 +
o)n+1)logg. Formally, we have that

’Pr[Sg] - % < 2974 = negl(n).

Proof. By the parameter setting, we can apply the leftover hash lemma to the target
ciphertext and this concludes the proof. O

15.4 Extension

We next consider a variant &fVEPRE, denoted byt WEPREZ2. In this variant,
users shar@\ as the public parameter as users share the giGugp ¢) in the El-
Gamal encryption scheme.

Setup(n): Given input the security parametgrit outputs a random matriR €
Zy“™ asparam

Reg(A.i): It generatess — ZJ9, andX; « ¥xm and compute®; = STA +
Xi € Zx™. It outputsek = P; anddk = S.

ReKeyGen, Enc, ReEnc, Dec: They are the same asliVEPRE.

The correctness and the multi-hop correctneds\EPRE?2 follow from these
of LWEPRE. In order to show the security, we need a lemma on the Gaussian
below.

Key Lemma: The following lemma states that the discretized folded Gauss-
ian with variancea?/2r statistically hides the discretized folded Gaussian with
variances?e?/2r, whens is negligible. The similar lemma appears [Rdg09
GKPV1Q. Additionally, the lemmas are used to construct a key-leakage resilient
secret-key encryption scheml&KPV1( and a key-dependent-message secure
public-key encryption schem@&GKOQ09)].

Binding two following claims, our lemma is obtained.

Lemma 15.4.1.Letq = q(n) be super-polynomial integer function efanda =
a(n) > 0ands € (0, 1) reals. Ifs is N, then the statistical distance betwep
and¥, + ¥;, is at mostn—~®).
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A similar claim already appeared iR€g09 Claim 2.2], the statistical distance
between¥, and ¥ (1.5, = Y, + Vs, is at most 9 for anyé € [0, 1), whose
distributions are not discretized.

Proof. Let u = 5gat be a natural number. Then, fraBlaim 15.4.2 we have that

PriX| > y] is at mostﬁexp(—mz). Foru < u’, we have that the statistical

distance betweel, and¥, + y’ is at most g + 2)/ga. Hence, the statistical

distance betwee¥, and¥, + ¥;, is at mostﬁ exp(nt?) + 26t. By settingt =

w(+flogn) € poly(n) andst = n~“®), we have that the upperboundiz’®. o

For example, we sai(n) = n2!°9" o = 1/n?, 6 = n~'°9" t = logn. Then,
q- 6 = n®o9M js super-polynomial im andst = n~©0°9" js negligible inn.

Claim 15.4.2. Let X be a random variable according tE(;a,. Then,
PrIX| < p] > 1- B(q, .6, ),

where
oga - ex (_71(,u + 1/2)2)
(u+1/2)V2r §*a? )

In particular, if 4 = 5qe - w(+/logn), PrIX| > 4] is negligible inn.

B(q’ a’ 6’ /’l) =

Proof. Let Bs = (wld/%n explr(u + 1/2)%/6°g%?). In order to prove the claim,

it is sufficient to show that, foX ~ Ws,, PrX| > (u + 1/2)/q] < B(Q,, 6, u).

Hence, we show that, fof ~ N(O, (6a)?/2x), Pr]X| > (u +1/2)/q] < B(q, @, 6, ).
Applying the tail bound for the Gaussian that|Rt[> to] < % -exp(t?/2) for

X ~ N(0, o?), we have that

PIIX| > (u-+ 1/2)/a] < — 1 ex (_W+_1/2)2)

(u+1/2)V2r 5202a?
This completes the proof. |

Claim 15.4.3. For anya > O, anyq € N, and anyu € N, the statistical distance
betweent, and¥, + u is at most(u + 2)/qa.

Proof. Let us consider a statistical distanag, between dNy(e?/27) and
dNg(a?/27) + pu, wheredNg(c?) is the following distribution; sampleX from
N(0, o) and returnggX]. SinceA, > A(Y,, ¥, + 1), we bound this distance by
(1 + 2)/qa.

Itis obvious that\, > A,/ if 4 > u’. Hence, we assume thats even and show
thatA, < (u + 1)/ge. Now, sinceu is even, the probability that/2 is the sample
from dNg(a?/27) equals to the probability that fromiNg(a?/27) + u. Therefore,
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we have that

A, <2 Pr X=K] - Pr [X =K
H kgz X~qu(a2/27r)[ X~dNg(a2/27) 41
kel/2 g ke1/2 4
20 [ - [ (- i
ka2 k172 O k-1/2 Qa

(o) o0

u/2+1/2 1 024112 1
o[ e [T ot

= Pr [X<u/2+1/2]
X~N(0,q2a2/21)

—  Pr [X<-u/2+1/2]
X~N(0,02a2/21)

< Pr [IXI<p/2+1/2]
X~N(0,q2a2/2r)

(+1)/2 g X2

= f — exp(-r—— |dx
—(u+1)/2 Q@ O«
(u+1)/2

Sf idXI ’lil
—(u+1)2 Q@ Qo

O

Proof of Security: We define the sequence of the games and bound the distance
between the games.

Gameg: The original IND-PRE-CPA game. First, the challenger fedds—
ngm to the adversaryA. The challenger simulates the oracles in the challenge
phase. If the oracl€uaLLENGE receivesi(, wo, wy), it flips a coinb € {0, 1} and
returns the target ciphertext, v*) = (A€, Pj-€* +t(wp)), wheree* « {0, 1}™.
Finally, the adversary outputs a guésslf b = b’, then the challenger outputs
1, otherwise 0.

Game;: We modify the above game, by changing the generation methods of
keys. At the beginning of the challenge phase, the challenger first generates
re-encryption keyfRy.,j « ng' for | = 2,...,Q. The other re-encryption
key Ri.j is computed byRi,j = Ricj — Rii. Next it chooses; — Zi* and
X1 « ™™ and compute®; = SIA+ Xs1. If InT is called with an input, the
challenger chooses and « ™, and compute®; = STA- R . A+ X;. If
ReKEy is called withi, j € HU, then it returnsR;.,;. If ReEnc is called with
i, J, (u, ), then it uses the re-encryption k&y., ; to re-encrypt the ciphertext.

The other conditions are the same as in the original g@amey.

Gameys. We change the generation method of the noises. We replace
X1,...,Xg « W™ with X + Xq,..., X + Xq, whereX « W™ Hence,
the key of the useiris P = STA - R] A+ X + X;.

1ei
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Gamey: We replace the key of the user 1. The challenger queries to the oracle
Asy,, and obtainsn samples 4, P = STA+X) e Zg™ x Z'qu. It computes
Pi=P- RIHiA+ Xi, whereX; « ‘P';m fori =1,...,k The other conditions
are the same as in the previous gamames s.

Games: We replace the oracl8gy, with U(Zg X Zg). Then, the challenger
obtainsm samples A, P) from U(Zg X Z'q).

The main strategy of the security proof is similar to that in the previous one.
We note thatGame; andGame; 5 is statistically identical if the parameter settings
satisfy the conditions in Lemma 5.8. The other games are statistically or computa-
tionally identical as in the previous proofs. We omit the details since they are very
similar to the previous proof.

15.5 Concluding Remarks

We remark that anyone can obtain the re-encryption key by using the proxy; Let
us order the proxy to convert the cipherteixt Q), wherek € [n], for the user to
the userj. Then the proxy returnsy, —RiTHjik). By repeating the conversion with
k=1,...,n, we obtain— RITH that is, the re-encryption key betweieand |.

In the real world, this can be considered as an attack. However, the IND-PRE-
CPA security does not capture this attacks. Hence, we should define the security
on leaks of the re-encryption keys in the CPA settings. We finally note that the

IND-PRE-CCA security captures this attacks, $€el07, IMNT10].
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